Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 448
Filter
1.
J Sci Food Agric ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843481

ABSTRACT

BACKGROUND: Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS: Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION: The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.

2.
RSC Adv ; 14(24): 17202-17212, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38808232

ABSTRACT

Transition metal-based catalysts are widely used in electrocatalysis, especially in the field of water splitting, due to their excellent electrochemical performance, which focuses on improving the efficiency of the complex oxygen evolution reaction (OER) that occurs at the anode. Transition metal-based catalysts will undergo electrochemical surface reconstruction and form (oxy)hydroxide-based hybrids, which consider the actual active sites for OER. So many efforts have been made to know the origin of the effect of electrochemical surface reconstruction on the performance of the OER. Herein, NiCoFe-phosphide catalyst nanosheets were constructed by a simple one-step hydrothermal reaction by adding oleylamine and ethanol to water solvent during the preparation of the catalyst precursor and high-temperature gas-phase phosphating and significantly showed high effectiveness catalytic activity and conductivity in comparison to normal and traditional preparation methods. Electrochemical analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) demonstrate that the surface was constructed during the electrochemical reaction and formed an amorphous layer of MOx(OH)y active sites, which increased the electrochemical surface area and promoted charge transfer. As well, the synthesized NiCoFePx-PNSs catalyst nanosheets exhibit excellent catalytic activity with a low overpotential equal to 259 mV to achieve the OER at a current density of 10 mA cm-2 and a low Tafel slope of 50.47 mV dec-1 which is better than for most reported transition metal-based electrocatalysts. This work provides a new design for a transition metal-based catalyst for OER as well as further insights into the effect of electrochemical surface reconstruction on intrinsic activity and OER performance.

3.
World Neurosurg ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734168

ABSTRACT

OBJECTIVE: To evaluate the risk factors of new osteoporotic vertebral compression fractures (OVCFs) after percutaneous vertebroplasty (PVP). METHODS: From January 2016 to November 2019, patients suffering from OVCFs were retrospectively reviewed. The independent influence factors for new OVCFs after PVP were assessed, from following variables: age, sex, body mass index, bone mineral density (BMD), history of alcoholism, smoking, hypertension, diabetes, glucocorticoid use, and prior vertebral fractures, the number of initial fractures, mean cement volume, method of puncture, D-type of cement leakage, and regular antiosteoporosis treatment. RESULTS: A total of 268 patients with 347 levels met the inclusion criteria and were finally included in this study. Forty-nine levels of new OVCFs among 33 patients (12.31%) were observed during the follow-up period. It indicated that female (adjusted odds ratio [OR]: 6.812, 95% confidence interval {CI}: [1.096, 42.337], P = 0.040), lower BMD (adjusted OR: 0.477, 95% CI: [0.300, 0.759], P = 0.002), prior vertebral fractures (adjusted OR: 16.145, 95% CI: [5.319, 49.005], P = 0.000), and regular antiosteoporosis treatment (adjusted OR: 0.258, 95% CI: [0.086, 0.774], P = 0.016) were independent influence factors for new OVCF. The cut-off value of BMD to reach new OVCF was -3.350, with a sensitivity of 0.660 and a specificity of 0.848. CONCLUSION: Female, lower BMD (T-score of lumbar), prior vertebral fractures, and regular antiosteoporosis treatment were independent influencing factors. BMD (T-score of lumbar) lower than -3.350 would increase risk for new OVCF, and none osteoporotic treatment has detrimental effect on new onset fractures following PVP.

4.
J Environ Manage ; 359: 120979, 2024 May.
Article in English | MEDLINE | ID: mdl-38692033

ABSTRACT

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Subject(s)
Charcoal , Iron , Reactive Oxygen Species , Tetracycline , Wastewater , Tetracycline/chemistry , Charcoal/chemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Electron Transport
5.
J Colloid Interface Sci ; 669: 794-803, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38744157

ABSTRACT

The coordination between carrier and active metal is critical to the catalytic efficiency of ammonia borane (AB) hydrolysis reaction. In the present study, we report a new type of catalytic support based on molybdenum boride (MBene) MoAl1-xB and demonstrate that the effective combination of MoAl1-xB with Ru nanoparticles can realize the significantly enhanced performance for hydrogen generation. Owing to the efficient activation and dissociation of reactants, the optimal Ru/MoAl1-xB catalyst achieves the large turnover frequency of 494 molH2 molRu-1 min-1, high hydrogen generation rate of 119817 mL min-1 gRu-1 and favorable apparent activation energy of 39.2 kJ mol-1 for the catalytic hydrolysis of AB under alkaline-free condition. The isotopic test suggests the cleavage of OH bond in H2O is the rate-determining step for hydrolysis reaction, while the fracture of B-H bond in AB is also well revealed by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Significantly, the flexible on-demand hydrogen generation is achieved by using chemical switches for on-off AB hydrolysis. This study provides a new support platform based on two-dimensional MBene to exploit efficient catalysts to boost AB dehydrogenation.

6.
Expert Opin Drug Saf ; : 1-8, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38778731

ABSTRACT

BACKGROUND: The study aims to obtain the real-world safety profile of tetracyclines in children younger than 8 years old and provide reference for clinical drug applications. RESEARCH DESIGN AND METHODS: We made a disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database through OpenVigil 2 and conducted a review of case reports regarding adverse drug reactions (ADRs) of tetracyclines in children younger than 8-year-old. RESULTS: FAERS analysis identified 32 ADRs of tetracyclines in children younger than 8-year-old. Respiratory, thoracic, and mediastinal disorders contained the most frequent ADRs among all system organ classes (SOCs). The top three positive signals with the highest proportional reporting ratio (PRR) were laryngeal injury, Horner's syndrome and methaemoglobinaemia. Sixteen published tetracyclines-associated cases in children younger than 8-year-old were identified in the literature, concentrating in three SOCs. Gastrointestinal disorders were the most commonly reported cases (n = 12). CONCLUSIONS: Several ADRs were newly reported only in children younger than 8-year-old in our research, including Horner's syndrome and methemoglobinemia. We recommended that the clinical practitioners should pay attention to the ADRs both in instruction and beyond the label. Take close care of children and timely intervene when the treatment is inevitable.

7.
Chemosphere ; 359: 142254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714253

ABSTRACT

Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Anaerobiosis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Sewage/microbiology , Biofouling/prevention & control , Water Purification/methods
9.
J Endourol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623792

ABSTRACT

PURPOSE: To investigate the feasibility, safety, and efficacy of the KangDuo Surgical Robot-01 (KD-SR-01) system for robot-assisted radical nephroureterectomy (UTUC). MATERIALS AND METHODS: This prospective, single-center, single-arm clinical study of patients with UTUC was conducted from August 2022 to July 2023 using the KD-SR-01 system. The perioperative and follow-up data were prospectively recorded. The National Aeronautics and Space Administration Task Load Index was calculated to present ergonomics. The technique was described in detail. RESULTS: A total of 13 patients underwent RARNU. None of the cases conversed to laparoscopic surgery or open surgery. The median docking time and console time were 524 (range, 139-963) seconds and 102.2 (range, 55.3-249.3) minutes, respectively. The median estimated blood loss was 40 (range, 10-100) ml. None of the patients required intraoperative blood transfusion. The median postoperative hospital stay was 4 (range, 2-7) days. Intraoperative or postoperative complications (Clavien-Dindo grade I) occurred in 9 patients. The surgeon Task Load Index global score achieved 1.05±1.86. Three patients received the single-docking technique, demonstrating similar perioperative results compared to patients with re-docking. CONCLUSIONS: The KD-SR-01 system was feasible, safe, and effective for robot-assisted radical nephroureterectomy.

10.
Microorganisms ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674781

ABSTRACT

In the world's first pig-to-human cardiac cytomegalovirus (PCMV), xenotransplant and elevated levels of porcine key factors contributing to patient mortality were considered. This has renewed attention on PCMV, a virus widely prevalent in pigs. Currently, there are no effective drugs or vaccines targeting PCMV, and its high detection difficulty poses challenges for prevention and control research. In this study, antiviral small hairpin RNA (shRNA) was selected and inserted into the Rosa26 and miR-17-92 loci of pigs via a CRISPR/Cas9-mediated knock-in strategy. Further in vitro viral challenge experiments demonstrated that these genetically edited pig cells could effectively limit PCMV replication. Through this process, we constructed a PCMV-infected cell model, validated partial viral interference sites, enhanced gene knock-in efficiency, performed gene editing at two different gene loci, and ultimately demonstrated that RNA interference (RNAi) technology combined with CRISPR/Cas9 has the potential to generate pig cells with enhanced antiviral infection capabilities. This opens up possibilities for the future production of pig populations with antiviral functionalities.

11.
Eur J Surg Oncol ; 50(6): 108321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598875

ABSTRACT

PURPOSE: The aim of this study was to develop a nomogram specially for predicting overall survival (OS) for Chinese patients with neuroblastoma (NB). METHODS: Patients with pathologically confirmed NB who were newly diagnosed and received treatments at our hospital from October 2013 to October 2021 were retrospectively reviewed. The nomogram for OS were built based on Cox regression analysis. The validation of the prognostic model was evaluated by concordance index (C-index), calibration curves, and decision curve analyses (DCAs). RESULTS: A total of 254 patients with NB were included in this study. They were randomly divided into a training cohort (n = 178) and a validation cohort (n = 76) at a ratio of 7:3. Multivariate analyses revealed that prognostic variables significantly related to the OS were age at diagnosis, bone metastasis, hepatic metastasis, INSS stage, MYCN status and DNA ploidy. The nomogram was constructed based on above 6 factors. The C-index values of the nomogram for predicting 3-year and 5-year OS were 0.926 and 0.964, respectively. The calibration curves of the nomogram showed good consistency between nomogram prediction and actual survival. The DCAs showed great clinical usefulness of the nomograms. Furthermore, patients with low-risk identified by our nomogram had much higher OS than those with high-risk (p < 0.001). CONCLUSION: The nomogram we constructed exhibited good predictive performance and could be used to assist clinicians in their decision-making process.


Subject(s)
Liver Neoplasms , Neuroblastoma , Nomograms , Humans , Neuroblastoma/mortality , Neuroblastoma/pathology , Neuroblastoma/genetics , Neuroblastoma/secondary , Male , Female , Infant , Child, Preschool , Retrospective Studies , Liver Neoplasms/secondary , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Child , Survival Rate , Neoplasm Staging , Bone Neoplasms/secondary , Bone Neoplasms/mortality , China/epidemiology , N-Myc Proto-Oncogene Protein/genetics , Prognosis , Age Factors , Proportional Hazards Models
12.
RSC Adv ; 14(15): 10182-10190, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38544941

ABSTRACT

Transition metal-based catalysts are commonly used for water electrolysis and cost-effective hydrogen fuel production due to their exceptional electrochemical performance, particularly in enhancing the efficiency of the oxygen evolution reaction (OER) at the anode. In this study, a novel approach was developed for the preparation of catalysts with abundant active sites and defects. The MoCoFe-phosphide catalyst nanosheets were synthesized using a simple one-step hydrothermal reaction and chemical vapor deposition-based phosphorization. The resulting MoCoFe-phosphide catalyst nanosheets displayed excellent electrical conductivity and a high number of electrochemically active sites, leading to high electrocatalytic activities and efficient kinetics for the OER. The MoCoFe-phosphide catalyst nanosheets demonstrated remarkable catalytic activity, achieving a low overpotential of only 250 mV to achieve the OER at a current density of 10 mA cm-2. The catalyst also exhibited a low Tafel slope of 43.38 mV dec-1 and maintained high stability for OER in alkaline media, surpassing the performance of most other transition metal-based electrocatalysts. The outstanding OER performance can be attributed to the effects of Mo and Fe, which modulate the electronic properties and structures of CoP. The results showed a surface with abundant defects and active sites with a higher proportion of Co2+ active sites, a larger specific surface area, and improved interfacial charge transfer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the catalyst's high activity originates from the presence of Mo6+/Mo4+ and Co2+/Co3+ redox couples, as well as the formation of active metal (oxy)hydroxide species on its surface.

13.
Environ Pollut ; 347: 123750, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38467364

ABSTRACT

Anaerobic membrane bioreactors (AnMBRs) have garnered considerable attention as a low-energy and low-carbon footprint treatment technology. With an increasing number of scholars focusing on AnMBR research, its outstanding performance in the field of water treatment has gradually become evident. However, the primary obstacle to the widespread application of AnMBR technology lies in membrane fouling, which leads to reduced membrane flux and increased energy demand. To ensure the efficient and long-term operation of AnMBRs, effective control of membrane fouling is imperative. Nevertheless, the interactions between various fouling factors are complex, making it challenging to predict the changes in membrane fouling. Therefore, a comprehensive analysis of the fouling factors in AnMBRs is necessary to establish a theoretical basis for subsequent membrane fouling control in AnMBR applications. This review aims to provide a thorough analysis of membrane fouling issues in AnMBR applications, particularly focusing on fouling factors and fouling control. By delving into the mechanisms behind membrane fouling in AnMBRs, this review offers valuable insights into mitigating membrane fouling, thus enhancing the lifespan of membrane components in AnMBRs and identifying potential directions for future AnMBR research.


Subject(s)
Wastewater , Water Purification , Anaerobiosis , Membranes, Artificial , Bioreactors , Waste Disposal, Fluid , Sewage
14.
ACS Appl Mater Interfaces ; 16(11): 13466-13480, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38445450

ABSTRACT

Guided bone regeneration (GBR) technology has been widely used for the regeneration of periodontal bone defects. However, the limited mechanical properties and bone regeneration potential of the currently available GBR membranes often limit their repair effectiveness. In this paper, serum-derived growth factor lysophosphatidic acid (LPA) nanoparticles and dopamine-decorative nanohydroxyapatite (pDA/nHA) particles were double-loaded into polylactic-glycolic acid/polycaprolactone (PLGA/PCL) scaffolds as an organic/inorganic biphase delivery system, namely, PP-pDA/nHA-LPA scaffolds. Physicochemical properties and osteogenic ability in vitro and in vivo were performed. Scanning electron microscopy and mechanical tests showed that the PP-pDA/nHA-LPA scaffolds had a 3D bionic scaffold structure with improved mechanical properties. In vitro cell experiments demonstrated that the PP-pDA/nHA-LPA scaffolds could significantly enhance the attachment, proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. In vivo, the PP-pDA/nHA-LPA scaffolds exhibited great cytocompatibility and cell recruitment ability in 2- and 4-week subcutaneous implantation experiments and significantly promoted bone regeneration in the periodontal defect scaffold implantation experiment. Moreover, LPA-loaded scaffolds were confirmed to enhance osteogenic activities by upregulating the expression of ß-catenin and further activating the Wnt/ß-catenin pathway. These results demonstrate that the biphase PP-pDA/nHA-LPA delivery system is a promising material for the GBR.


Subject(s)
Indoles , Lysophospholipids , Osteogenesis , Polymers , Tissue Scaffolds , Tissue Scaffolds/chemistry , beta Catenin , Bone Regeneration , Durapatite/chemistry , Tissue Engineering/methods
15.
World J Clin Cases ; 12(6): 1144-1149, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464923

ABSTRACT

BACKGROUND: This study presents a case of rapidly developing respiratory failure due to antisynthetase syndrome (AS) following coronavirus disease 2019 (COVID-19) in a 33-year-old man diagnosed with Klinefelter syndrome (KS). CASE SUMMARY: A 33-year-old man with a diagnosis of KS was admitted to the Department of Pulmonary and Critical Care Medicine of a tertiary hospital in China for fever and shortness of breath 2 wk after the onset of COVID-19. Computed tomography of both lungs revealed diffuse multiple patchy heightened shadows in both lungs, accompanied by signs of partial bronchial inflation. Metagenomic next-generation sequencing of the bronchoalveolar lavage fluid suggested absence of pathogen. A biopsy specimen revealed organizing pneumonia with alveolar septal thickening. Additionally, extensive auto-antibody tests showed strong positivity for anti-SSA, anti-SSB, anti-Jo-1, and anti-Ro-52. Following multidisciplinary discussions, the patient received a final diagnosis of AS, leading to rapidly progressing respiratory failure. CONCLUSION: This study underscores the clinical progression of AS-associated interstitial lung disease subsequent to viral infections such as COVID-19 in patients diagnosed with KS.

16.
Drug Dev Res ; 85(1): e22150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349256

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a progressive disease that can further evolve towards liver fibrosis and hepatocellular carcinoma in the end stage. Costunolide (Cos) is a natural sesquiterpene lactone that exhibits both anti-inflammatory and antioxidant properties. However, the therapeutic effect of Cos on NAFLD is not clear. In this study, we explored the potential protective effect and mechanism of Cos on NAFLD. C57BL/6 mice were fed with high-fat diet (HFD) to induce NAFLD. Cos was administered by gavage to observe the effect of Cos on NAFLD. We demonstrated that oral administration of Cos reduced HFD-induced hepatic fibrosis and the release of inflammatory cytokines, limiting the generation of reactive oxygen species. In vitro experiments revealed that pretreatment with Cos significantly decreased PA-induced production of inflammatory cytokines and fibrosis in AML-12 cells. Mechanism study showed that the effect of Cos was correlated to the induction of Nrf-2 and inhibition of NF-κB pathways. Collectively, these findings indicated that Cos exerts hepatoprotective effect against NAFLD through blocking inflammation and oxidative stress. Our study suggested that Cos might be an effective pharmacotherapy for the treatment of NAFLD.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Sesquiterpenes , Mice , Animals , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Diet, High-Fat/adverse effects , Oxidative Stress , Inflammation/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Cytokines , Liver Cirrhosis
18.
Sci Transl Med ; 16(734): eadi3360, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354225

ABSTRACT

Adult lung resident stem/progenitor cells, including P63+ progenitor cells, have demonstrated the capacity for regeneration of lung epithelium in preclinical models. Here, we report a clinical trial of intrapulmonary P63+ progenitor cell transplantation in 28 participants with stage II to IV chronic obstructive pulmonary disease (COPD). Autologous P63+ progenitor cells were isolated from the airway basal layer of participants in the intervention group via bronchoscopic brushing, cultured for 3 to 5 weeks, and then transplanted back into the lungs via bronchoscopy at 0.7 × 106 to 5.2 × 106 cells per kilogram of body weight. Twenty patients were evaluable at the end of the study (intervention group, n = 17; control group, n = 3). No grade 3 to 5 adverse events (AEs) or serious AEs occurred. Although bronchoscopy-associated AEs were recorded in participants in the intervention group, other AEs were not substantial different between groups. Twenty-four weeks after transplantation, participants in the intervention group displayed improvement in gas transfer capacity [diffusing capacity of the lung for carbon monoxide (DLCO) change from baseline: +18.2%], whereas the control group experienced a decrease (DLCO change from baseline: -17.4%; P = 0.008). Furthermore, participants in the intervention group showed >30-meter increase in walking distance within 6 minutes. Transcriptomic analysis of progenitor cells isolated from responding and nonresponding individuals in the intervention group showed that higher expression of P63 was associated with treatment efficacy. In conclusion, transplantation of cultured P63+ lung progenitor cells was safe and might represent a potential therapeutic strategy for COPD.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Transplantation, Autologous , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Epithelium/metabolism , Stem Cells/metabolism
19.
Vaccines (Basel) ; 12(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38400145

ABSTRACT

Salmonella Typhimurium (S. Typhimurium) is a zoonotic pathogen posing a threat to animal husbandry and public health. Due to the emergence of antibiotic-resistant strains, alternative prevention and control strategies are needed. Live attenuated vaccines are an ideal option that provide protection against an S. Typhimurium pandemic. To develop a safe and effective vaccine, double-gene mutations are recommended to attenuate virulence. In this study, we chose aroA and luxS genes, whose deletion significantly attenuates S. Typhimurium's virulence and enhances immunogenicity, to construct the double-gene mutant vaccine strain SAT52ΔaroAΔluxS. The results show that the mutant strain's growth rate, adherence and invasion of susceptible cells are comparable to a wild-type strain, but the intracellular survival, virulence and host persistence are significantly attenuated. Immunization assay showed that 106 colony-forming units (CFUs) of SAT52ΔaroAΔluxS conferred 100% protection against wild-type challenges; the bacteria persistence in liver and spleen were significantly reduced, and no obvious pathological lesions were observed. Therefore, the double-gene mutant strain SAT52ΔaroAΔluxS exhibits potential as a live attenuated vaccine candidate against S. Typhimurium infection.

20.
Acta Pharmacol Sin ; 45(5): 988-1001, 2024 May.
Article in English | MEDLINE | ID: mdl-38279043

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.


Subject(s)
Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Receptor, Fibroblast Growth Factor, Type 1 , Tumor Necrosis Factor-alpha , Animals , Diet, High-Fat/adverse effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Macrophages/metabolism , Macrophages/drug effects , Mice , Male , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Tumor Necrosis Factor-alpha/metabolism , Mice, Knockout , Liver/pathology , Liver/metabolism , Signal Transduction , Inflammation/metabolism , MAP Kinase Signaling System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...