Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 52: 151-170, 2023 10.
Article in English | MEDLINE | ID: mdl-37269937

ABSTRACT

BACKGROUND: The relationship between gut microbiota and human health has gradually been recognized. Increasing studies show that the disorder of gut microbiota is related to the occurrence and development of many diseases. Metabolites produced by the gut microbiota are responsible for their extensive regulatory roles. In addition, naturally derived medicine food homology species with low toxicity and high efficiency have been clearly defined owing to their outstanding physiological and pharmacological properties in disease prevention and treatment. AIM OF REVIEW: Based on supporting evidence, the current review summarizes the representative work of medicine food homology species targeting the gut microbiota to regulate host pathophysiology and discusses the challenges and prospects in this field. It aims to facilitate the understanding of the relationship among medicine food homology species, gut microbiota, and human health and further stimulate the advancement of more relevant research. KEY SCIENTIFIC CONCEPTS OF REVIEW: As this review reveals, from the initial practical application to more mechanism studies, the relationship among medicine food homology species, gut microbiota, and human health has evolved into an irrefutable interaction. On the one hand, through affecting the population structure, metabolism, and function of gut microbiota, medicine food homology species maintain the homeostasis of the intestinal microenvironment and human health by affecting the population structure, metabolism, and function of gut microbiota. On the other hand, the gut microbiota is also involved in the bioconversion of the active ingredients from medicine food homology species and thus influences their physiological and pharmacological properties.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Intestines
2.
Chem Rec ; 23(3): e202200289, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36722727

ABSTRACT

Indoles and their derivatives have dominated a significant proportion of nitrogen-containing heterocyclic compounds and play an essential role in synthetic and medicinal chemistry, pesticides, and advanced materials. Compared with conventional synthetic strategies, direct functionalization of indoles provides straightforward access to construct diverse indole scaffolds. As we enter an era emphasizing green and sustainable chemistry, utilizing environment-friendly solvents represented by water demonstrates great potential in synthesizing valuable indole derivatives. This review aims to depict the critical aspects of aqueous-mediated indoles functionalization over the past decade and discusses the future challenges and prospects in this fast-growing field. For the convenience of readers, this review is classified into three parts according to the bonding modes (C-C, C-N, and C-S bonds), which focus on the diversity of indole derivatives, the prominent role of water in the chemical process, and the types of catalyst systems and mechanisms. We hope this review can promote the sustainable development of the direct functionalization of indoles and their derivatives and the discovery of novel and practical organic methods in aqueous phase.

3.
Org Lett ; 24(6): 1362-1366, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35119868

ABSTRACT

Developing efficient strategies for synthesizing novel diazocine compounds is valuable because their use has been limited by their synthetic accessibility. This work describes the catalytic (4+3) cycloaddition reaction of carbonyl ylides with azoalkenes generated in situ. The rhodium-catalyzed cascade reaction features good atom and step economy, providing the first access to oxo-bridged diazocines. The product could be synthesized on a gram scale and converted into diversely substituted dihydroisobenzofurans.

4.
J Food Sci ; 86(9): 4209-4222, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34392532

ABSTRACT

Red-fleshedapples are preferredbecause of their high content of phenolics and antioxidants in peel and pulp. Herein, we evaluated the mechanisms of apple peel polyphenolic extracts (APP) and apple flesh polyphenolic extracts (AFP) from the new red-fleshed apple in inhibiting cell proliferation and inducing apoptosis on human breast cancer MDA-MB-231 cells. The antiproliferative activities were determined by the CCK8 assay. The expression of proteins was determined using Western blot. We found that the content of polyphenols and flavonoids in APP was significantly higher than that in AFP, and 14 main phenolic compounds in APP and AFP were quantified using UPLC-MS/MS techniques. Besides, the significant inhibition effects of APP and AFP were achieved through Akt pathway by inducing apoptosis (significantly upregulating reactive oxygen species [ROS] levels, and downregulating expression of pAkt, pBad, Bcl-2, promoting Cytochrome c release, activating Cle-Caspase 9, and inducing expressions of Cle-Caspase 3 and Cle-PARP), and inducing G0/G1 cell cycle arrest (increased expressions of p-p53 and p21 and decreased expressions of PCNA and Cyclin D1). And the inhibition effect of APP was stronger than that of AFP. These results suggest that AFP and APP may be excellent sources of natural chemicals for treating triple-negative breast cancer MDA-MB-231 cells. PRACTICAL APPLICATION: The effects of antiproliferation of phenolic extracts from red-fleshed apple peels and flesh on human breast cancer MDA-MB-231 cells were evaluated. The data may clarify the functional parts of red-fleshed apple and provide some basis for scientific researchers and consumers to recognize and exploit red-fleshed apple.


Subject(s)
Fruit , G1 Phase Cell Cycle Checkpoints , Malus , Plant Extracts , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Liquid , Female , Fruit/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Malus/chemistry , Phenols/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry
5.
J Food Sci ; 85(9): 2952-2959, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32790197

ABSTRACT

The aim of this study was to characterize the phenolic profiles in the extracts and digesta (after in vitro digestion) of different red-fleshed apple fruit parts and to assess the effects of digestion on the in vitro antioxidant capacity and antiproliferative activity. The main polyphenols were identified by UPLC-MS/MS and HPLC. Our results indicate that the digesta had less total phenolics, flavonoids, and anthocyanins, but more free phenolic acids, than the extracts. An analysis of the in vitro antioxidant capacity (including ABTS radical scavenging activity, DPPH radical-scavenging capacity, ferric reducing antioxidant power [FRAP], and cellular antioxidant activity [CAA]) revealed that the digestion decreased the ABTS, DPPH, and FRAP values, but increased the CAA values, relative to the corresponding values for extracts. These results suggest that the digestion improved the effectiveness of the phenolic substances. Moreover, our findings imply that the digestion promoted the antiproliferative activity of red-fleshed apple peels and flesh relative to the extracts. Future in vivo investigations are warranted based on the results of the current study. PRACTICAL APPLICATION: The effects of an in vitro digestion on the phenolic compounds as well as the antioxidative and antiproliferative activities of red-fleshed apple were evaluated. The resulting data may clarify the bioavailability of the polyphenols in red-fleshed apple and enable scientists and consumers to exploit natural polyphenols.


Subject(s)
Antioxidants/chemistry , Malus/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Anthocyanins/chemistry , Anthocyanins/metabolism , Antioxidants/metabolism , Chromatography, Liquid , Digestion , Flavonoids/chemistry , Flavonoids/metabolism , Fruit/chemistry , Humans , Malus/metabolism , Phenols/chemistry , Phenols/metabolism , Phytochemicals/metabolism , Plant Extracts/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Tandem Mass Spectrometry
6.
J Food Sci ; 85(3): 718-726, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32064624

ABSTRACT

Red-fleshed apples are preferred because of their high content of phenolics and antioxidants. In this study, the phenolic characteristics, antioxidant properties, and antihuman cancer cell properties of the four hybrids of Malus sieversii f. niedzwetzkyana (Ledeb.) M. Roem were analyzed. In addition, the antioxidant and anti-proliferation properties of these apples were measured. Compared to "Fuji" apples, the red-fleshed apples were rich in phenolic and flavonoid chemicals, ranging from 1.5- to 2.6-fold and 1.4- to 2.4-fold, respectively. In all antioxidant methods (DPPH radical-scavenging capacity, ABTS radical scavenging activity, ferric reducing antioxidant power, and cell antioxidant capacity), "A38" obtained the highest antioxidant value, whereas "Fuji" got the lowest antioxidant value. The IC50 values ranged from 33.44 ("A38") to 73.36 mg/mL ("Fuji") for MCF-7 and 20.94 ("A38") to 39.39 mg/mL ("Fuji") for MAD-MB-231. The red-fleshed "A38" and "Meihong" exhibited higher antioxidant and antiproliferative activities in vitro because of the higher levels of phenolics, and the higher potential for development and utilization value. PRACTICAL APPLICATION: The phenolic compounds, antioxidant activity, and antiproliferative activity in vitro of four red-fleshed apple cultivars and one white-fleshed apple cultivar were compared in this study. This information should assist to give a reasonable evaluation for scientists to breed new cultivars with high phenolics and to exploit the natural polyphenol.


Subject(s)
Antioxidants/chemistry , Malus/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Antioxidants/pharmacology , Cell Line , Cell Proliferation/drug effects , China , Flavonoids/chemistry , Flavonoids/pharmacology , Fruit/chemistry , Fruit/classification , Humans , Malus/classification , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...