Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772203

ABSTRACT

Methane (CH4), as the main component of natural gas and coal mine gas, is widely used in daily life and industrial processes and its leakage always causes undesirable misadventures. Thus, the rapid detection of low concentration methane is quite necessary. However, due to its robust chemical stability resulting from the strong tetrahedral-symmetry structure, the methane molecules are usually chemically inert to the sensing layers in detectors, making the rapid and efficient alert a big challenge. In this work, palladium nanoparticles (Pd NPs) embedded indium oxide porous hollow tubes (In2O3 PHTs) were successfully synthesized using Pd@MIL-68 (In) MOFs as precursors. All In2O3-based samples derived from Pd@MIL-68 (In) MOFs inherited the morphology of the precursors and exhibited the feature of hexagonal hollow tubes with porous architecture. The gas-sensing performances to 5000 ppm CH4 were evaluated and it was found that Pd@In2O3-2 gave the best response (Ra/Rg = 23.2) at 370 °C, which was 15.5 times higher than that of pristine-In2O3 sensors. In addition, the sensing materials also showed superior selectivity against interfering gases and a rather short response/recovery time of 7 s/5 s. The enhancement in sensing performances of Pd@In2O3-2 could be attributed to the large surface area, rich porosity, abundant oxygen vacancies and the catalytic function of Pd NPs.

2.
J Colloid Interface Sci ; 630(Pt B): 47-56, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327738

ABSTRACT

One-dimensional carbon-based materials have emerged as promising electromagnetic wave absorption agents due to their outstanding conductivity, high stability, low weight, and easy availability. Properly optimizing their electromagnetic parameters is expected to further enhance the electromagnetic wave attenuation capacity. In this work, efficient Cu9S5/C nanocomposite fibers are prepared by a combined approach of electrospinning and subsequent carbonization-sulfurization processes. The Cu9S5 nanoparticles with size of ca. 100-200 nm were homogeneously embedded in fibrous carbon matrix with diameter of 300 nm. For electromagnetic wave absorption, the optimized composited nanofibers (Cu9S5/C-3) exhibited an extremely superb reflection loss of -65.4 dB (9.5 GHz, 2.7 mm) at a lower mass fraction (20 wt%). And the effective absorption bandwidth could be up to 4.1 GHz (8.0-12.1 GHz) with a matching thickness of 2.9 mm, covering the whole X-band. Electromagnetic wave attenuation mechanism investigation revealed that the performance enhancement originated from the synergy of various loss pathways, including interfacial polarization, dipole polarization, and conductive loss. The unique hierarchical structure from particle embedding, one-dimensional fiber, to three-dimensional network further amplified the performance advantages of each component. This work is anticipated to provide a feasible strategy to synthesize sulfide/carbon binary composite fibers for efficient electromagnetic wave absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...