Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37687418

ABSTRACT

Biotic and abiotic factors influence the formation of fungal-algal pairings in lichen symbiosis. However, the specific determinants of these associations, particularly when distantly related fungi are involved, remain poorly understood. In this study, we investigated the impact of different drivers on the association patterns between taxonomically diverse lichenized fungi and their trebouxioid symbiotic partners. We collected 200 samples from four biomes and identified 41 species of lichenized fungi, associating them with 16 species of trebouxioid green algae, of which 62% were previously unreported. The species identity of both the fungal and algal partners had the most significant effect on the outcome of the symbiosis, compared to abiotic factors like climatic variables and geographic distance. Some obviously specific associations were observed in the temperate zone; however, the nestedness value was lower in arid regions than in cold, polar, and temperate regions according to interaction network analysis. Cophylogenetic analyses revealed congruent phylogenies between trebouxioid algae and associated fungi, indicating a tendency to reject random associations. The main evolutionary mechanisms contributing to the observed phylogenetic patterns were "loss" and "failure to diverge" of the algal partners. This study broadens our knowledge of fungal-algal symbiotic patterns in view of Trebouxia-associated fungi.

2.
Front Genet ; 13: 899831, 2022.
Article in English | MEDLINE | ID: mdl-35719367

ABSTRACT

Advances in induced pluripotent stem cell (iPSC) techniques have opened up new perspectives in research on developmental biology. Compared with other sources of human cellular models, iPSCs present a great advantage in hosting the unique genotype background of donors without ethical concerns. A wide spectrum of cellular and organoid models can be generated from iPSCs under appropriate in vitro conditions. The pluripotency of iPSCs is orchestrated by external signalling and regulated at the epigenetic, transcriptional and posttranscriptional levels. Recent decades have witnessed the progress of studying tissue-specific expressions and functions of microRNAs (miRNAs) using iPSC-derived models. MiRNAs are a class of short non-coding RNAs with regulatory functions in various biological processes during development, including cell migration, proliferation and apoptosis. MiRNAs are key modulators of gene expression and promising candidates for biomarker in development; hence, research on the regulation of human development by miRNAs is expanding. In this review, we summarize the current progress in the application of iPSC-derived models to studies of the regulatory roles of miRNAs in developmental processes.

3.
MycoKeys ; (41): 107-118, 2018.
Article in English | MEDLINE | ID: mdl-30429664

ABSTRACT

The monotypic lichenised genus Anamylopsora (Baeomycetaceae, Baeomycetales), with its single species A.pulcherrima, is distributed in the arid areas of the Northern Hemisphere, including China. In this paper, we introduce another species new to science, Anamylopsorapruinosa. The new species is characterised by a densely pruinose upper surface, abundantly thick and strong rhizines and terricolous habitat. It is also strongly supported by the phylogenetic and species delimitation analyses based on nrDNA ITS sequences, in which A.pruinosa forms well-supported clade separated from A.pulcherrima.

SELECTION OF CITATIONS
SEARCH DETAIL
...