Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020101

ABSTRACT

Optical monitoring of the position and alignment of objects with a precision of only a few nanometres is key in applications such as smart manufacturing and force sensing. Traditional optical nanometrology requires precise nanostructure fabrication, multibeam interference or complex postprocessing algorithms, sometimes hampering wider adoption of this technology. Here we show a simplified, yet robust, approach to achieve nanometric metrology down to 2 nm resolution that eliminates the need for any reference signal for interferometric measurements. We insert an erbium-doped quartz crystal absorber into a single Fabry-Pérot cavity with a length of 3 cm and then induce exceptional points by matching the optical loss with the intercavity coupling. We experimentally achieve a displacement response enhancement of 86 times compared with lossless methods, and theoretically argue that an enhancement of over 450 times, corresponding to subnanometre resolution, may be achievable. We also show a fivefold enhancement in the signal-to-noise ratio, thus demonstrating that non-Hermitian sensors can lead to improved performances over the Hermitian counterpart.

2.
Sci Rep ; 14(1): 13331, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858449

ABSTRACT

We theoretically investigate the model of a quadratically coupled optomechanical system with a Newtonian gravitational potential in the weak-driving regime, where the optical cavity is driven by an external laser. The steady state of the whole system is treated in the framework of a few-photon subspace. We find that the conventional single-photon blockade, nonstandard types of single-photon blockade, two-photon blockade, and photon-induced tunneling can be induced by gravity when the quadratic optomechanical coupling strength remains constant. Moreover, we find that gravitational potential energy can compensate for the lack of quadratic optomechanical coupling for observation photon blockade. In particular, the photon stream with super-Poissonian distribution can be converted into a sub-Poissonian, antibunching photon stream by changing the driving detuning when the gravitational potential energy is included. These results show that the gravity has potential for realizing the manipulation of photon blockade in a quadratically coupled optomechanical system.

3.
Opt Express ; 32(12): 22020-22030, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859542

ABSTRACT

We propose how to achieve chiral photon blockade by spinning a nonlinear optical resonator. We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes, due to the spinning-induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device in the static regime. Also, we find that in comparison with the static case, robust non-classical correlations against random backscattering losses can be achieved for such a quantum chiral system. Our work, extending previous works on the spontaneous breaking of optical chiral symmetry from the classical to purely quantum regimes, can stimulate more efforts towards making and utilizing various chiral quantum effects, including applications for chiral quantum networks or noise-tolerant quantum sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...