Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 142: 193-203, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527884

ABSTRACT

Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Male , Zebrafish/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Phenylurea Compounds/pharmacology , Reproduction , Water Pollutants, Chemical/metabolism
2.
Environ Pollut ; 347: 123723, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38452838

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, with an incidence of 5-10%. This study compared the traits of zebrafish with three diagnostic criteria for human PCOS, and the diagnostic criteria for zebrafish PCOS were proposed: decreased fecundity, elevated testosterone (T) or 11-ketotestosterone (11-KT) levels and increased cortical-alveolar oocyte (CO) ratio, enhancing the zebrafish PCOS model's accuracy. According to the mammalian PCOS classification, the type of zebrafsh PCOS is divided into four phenotypes (A, B, C and D), but the four phenotypes of zebrafish PCOS are not fully covered in the existing studies (A and D). In this study, we successfully induced phenotype B zebrafish PCOS model using the aromatase inhibitor, letrozole (LET). That is, wild-type female zebrafish were exposed to 1000 µg/L LET for 30 days. Reproductive tests showed decreased fecundity in female zebrafish exposed to LET (Control: 132.63, 146.00, 173.00; LET: 29.20, 90.00, 82.71). Hormone analysis showed that female zebrafish exposed to LET had significantly lower 17ß-estradiol/testosterone (E2/T) ratios, indicating elevated T levels. Meanwhile, levels of 11-KT in the ovaries exposed to LET were significantly up-regulated (Control: 0.0076 pg/µg; LET: 0.0138 pg/µg). Pathological sections of the ovary showed fewer CO in the LET-exposed group (Control: 16.27%; LET: 8.38%). In summary, the zebrafish PCOS model summarized and studied in this study provide a reliable and economical tool for the screening of therapeutic drugs, as well as for the etiology research and treatment strategies of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Letrozole/toxicity , Letrozole/therapeutic use , Polycystic Ovary Syndrome/chemically induced , Zebrafish , Hypothalamic-Pituitary-Gonadal Axis , Estradiol/toxicity , Testosterone , Mammals
4.
Sci Total Environ ; 908: 168420, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37963533

ABSTRACT

Edema represents a notable outcome in fishes exposed to aquatic pollutants, yet the underlying etiology remains inadequately understood. This investigation delves into the etiological factors of edema formation in 7 days post fertilization (dpf) zebrafish larvae following their exposure to InP/ZnS quantum dots (QDs), which was chosen as a prototypical edema inducer. Given the fundamental role of the kidney in osmoregulation, we used transgenic zebrafish lines featuring fluorescent protein labeling of the glomerulus, renal tubule, and blood vessels, in conjunction with histopathological scrutiny. We identified the pronounced morphological and structural aberrations within the pronephros. By means of tissue mass spectrometry imaging and hyperspectral microscopy, we discerned the accumulation of InP/ZnS QDs in the pronephros. Moreover, InP/ZnS QDs impeded the renal clearance capacity of the pronephros, as substantiated by diminished uptake of FITC-dextran. InP/ZnS QDs also disturbed the expression levels of marker genes associated with kidney development and osmoregulatory function at the earlier time points, which preceded the onset of edema. These results suggest that impaired fluid clearance most likely resulting from pronephros injury contributes to the emergence of zebrafish edema. Briefly, our study provides a perspective: the kidney developmental injury induced by exogenous substances may regulate edema in a zebrafish model.


Subject(s)
Quantum Dots , Zebrafish , Animals , Zebrafish/genetics , Quantum Dots/toxicity , Quantum Dots/chemistry , Larva , Kidney Glomerulus
5.
Food Chem Toxicol ; 182: 114155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898232

ABSTRACT

Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 µM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 µM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 µM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 µM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Zebrafish , Larva , Thyroid Hormones , Thyroid Gland , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity
6.
Ecotoxicol Environ Saf ; 266: 115574, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37839186

ABSTRACT

Pyrrolizidine alkaloids (PAs) are a class of phytotoxins that are widely distributed and can be consumed by humans through their daily diets. Echimidine is one of the most abundant PAs, but its safety, particularly its effects on development, is not fully understood. In this study, we used a zebrafish model to assess the developmental toxicity of echimidine. Zebrafish embryos were exposed to echimidine at concentrations of 0.02, 0.2, and 2 mg/L for 96 h. Our study revealed that embryonic exposure to echimidine led to developmental toxicity, characterized by delayed hatching and reduced body length. Additionally, echimidine exposure had a notable impact on heart development in larvae, causing tachycardia and reducing stroke volume (SV)and cardiac output (CO). Upon exposing the transgenic zebrafish strain Tg(cmlc2:EGFP) to echimidine, we observed atrial dilation and thinning of the atrial wall in developing embryos. Moreover, our findings indicated abnormal expression of genes associated with cardiac development (including gata4, tbx5, nkx2.5 and myh6) and genes involved in calcium signaling pathways (such as cacna1aa, cacna1sa, ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a1, slc8a3 and slc8a4a). In summary, our findings demonstrate that echimidine may impair cardiac development and function in zebrafish larvae by disrupting calcium transport, leading to developmental toxicity. These findings provide insights regarding the safety of products containing PAs in food and medicine.


Subject(s)
Atrial Fibrillation , Pyrrolizidine Alkaloids , Animals , Humans , Zebrafish/metabolism , Larva , Pyrrolizidine Alkaloids/metabolism , Embryo, Nonmammalian/metabolism
7.
Discov Nano ; 18(1): 101, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37581715

ABSTRACT

Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.

8.
Environ Sci Technol ; 57(28): 10201-10210, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37406193

ABSTRACT

This study aimed to investigate the transgenerational effects of tributyltin exposure on rat neurodevelopment in male offspring and the potential mechanisms. Neonatal female rats were exposed to the environmental level of tributyltin and then mated with nonexposed males after sexual maturity to produce the F1 generation. The F1 generation (with primordial germ cell exposure) was mated with nonexposed males to produce nonexposed offspring (the F2 and F3 generations). Neurodevelopmental indicators and behavior were observed for the F1, F2, and F3 generations during postnatal days 1-25 and 35-56, respectively. We found premature eye-opening and delayed visual positioning in newborn F1 rats and anxiety and cognitive deficits in prepubertal F1 male rats. These neurodevelopmental impacts were also observed in F2 and F3 males. Additionally, F1-F3 males exhibited increased serotonin and dopamine levels and a loose arrangement of neurons in the hippocampus. We also observed a reduction in the expression of genes involved in intercellular adhesion and increased DNA methylation of the Dsc3 promoter in F1-F3 males. We concluded that tributyltin exposure led to transgenerational effects on neurodevelopment via epigenetic reprogramming in male offspring. These findings provide insights into the risks of neurodevelopmental disorders in offspring from parents exposed to tributyltin.


Subject(s)
Prenatal Exposure Delayed Effects , Trialkyltin Compounds , Rats , Animals , Male , Female , Humans , Reproduction , DNA Methylation , Trialkyltin Compounds/toxicity , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/psychology , Epigenesis, Genetic
9.
Ecotoxicol Environ Saf ; 261: 115093, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37270882

ABSTRACT

Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 µg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 µg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17ß-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.


Subject(s)
Hyperuricemia , Kidney Diseases , Adult , Humans , Male , Female , Mice , Animals , Uric Acid , Estradiol , Kidney/metabolism
10.
Aquat Toxicol ; 258: 106511, 2023 May.
Article in English | MEDLINE | ID: mdl-37011547

ABSTRACT

Diflubenzuron, an insecticide commonly used in marine fish farming, has been detected in various marine environments. However, its potential impact on marine fish remains largely unknown. This study investigated the reproductive toxicity of chronic diflubenzuron exposure in female marine medaka (Oryzias melastigma). Marine medaka were exposed continuously to environmentally relevant concentrations of diflubenzuron (0.1, 1, and 10 µg/L) or a solvent control from the fertilized egg to adulthood. In exposed female marine medaka, the gonadosomatic index (GSI) and the number of laid eggs were significantly reduced. Moreover, diflubenzuron-exposed female marine medaka showed altered ovarian histopathology, with an increased relative proportion of immature oocytes and atretic follicles and a decreased relative proportion of mature oocytes. Maternal exposure to diflubenzuron also inhibited the development of the F1 generation, significantly reducing the hatching rate of F1 embryos and significantly increasing the malformation rate of F1 larvae. Furthermore, changes in hormone levels and expression of genes along the hypothalamus-pituitary-gonad-liver (HPGL) axis were observed, which may be the fundamental reason for all the reproductive toxic effects mentioned above. These results provide new insights into the impact of diflubenzuron on the female marine medaka reproductive system and underscore the importance of investigating the potential environmental risks of diflubenzuron in the marine environment.


Subject(s)
Diflubenzuron , Oryzias , Water Pollutants, Chemical , Animals , Female , Water Pollutants, Chemical/toxicity , Ovary , Reproduction
11.
Ecotoxicol Environ Saf ; 256: 114899, 2023 May.
Article in English | MEDLINE | ID: mdl-37060801

ABSTRACT

Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-ß/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Mice , Humans , Animals , Plant Extracts/pharmacology , Liver , NF-kappa B/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Tea
12.
Environ Sci Pollut Res Int ; 30(20): 58944-58955, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37002518

ABSTRACT

Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.


Subject(s)
Pesticides , Animals , Cytochrome P-450 CYP1A1/metabolism , Embryo, Nonmammalian/metabolism , Pesticides/toxicity , Pesticides/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Zebrafish
13.
J Environ Sci (China) ; 125: 650-661, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375947

ABSTRACT

The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Pesticides , Water Pollutants, Chemical , Animals , Cardiotoxicity/metabolism , Electron Transport Complex IV/metabolism , Embryo, Nonmammalian , Larva , Pesticides/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
14.
Sci Total Environ ; 855: 158715, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36113792

ABSTRACT

Many nanomaterials containing different valences of iron have been designed for applications in biomedicine, energy, catalyzers, nanoenzymes, and so on. However, the toxic effects of the valence state of iron in iron-based nanomaterials are still unclear. Here, three different-valence iron-based nanomaterials (nFe@Fe3O4, nFe3O4 and nFe2O3) were synthesized and exposed to zebrafish embryos and mammalian cardiomyocytes. All of them induced ferroptosis along with an increase in valence through iron overload and the Fenton reaction. Specifically, we exposed Tg (cmlc2:EGFP) zebrafish to the three iron-based nanomaterials and found that nFe@Fe3O4 treatments led to enlarged ventricles, while nFe3O4 and nFe2O3 increased atrial size, which was consistent with the results from hematoxylin-eosin staining and in situ hybridization. Moreover, we used ferroptosis inhibitors (ferrostatin-1 or deferoxamine) to treat zebrafish along with nanoparticles exposure and found that the cardiac developmental defects caused by nFe3O4 and nFe2O3, but not nFe@Fe3O4, could be completely rescued by ferroptosis inhibitors. We further found that nFe@Fe3O4, rather than nFe3O4 and nFe2O3, reduced the dissolved oxygen in the medium, which resulted in hypoxia and acceleration of heart tube formation and ventricular enlargement, and both were fully rescued by oxygen donors combined with ferroptosis inhibitors. Consistently, these findings were also observed in mammalian cardiomyocytes. In summary, our study demonstrates that the valence state of iron-based nanomaterials determines the ferroptosis potential. Our study also clarifies that high-valence iron-based nanomaterials induce an enlarged atrium via ferroptosis, while low-valence ones increase the ventricular size through both hypoxia and ferroptosis, which is helpful to understand the potential adverse effects of different valences of iron-based nanomaterials on environmental health and assure the responsible and sustainable development of nanotechnology.


Subject(s)
Ferroptosis , Nanostructures , Animals , Iron/toxicity , Zebrafish , Nanostructures/toxicity , Hypoxia , Oxygen , Mammals
15.
J Environ Sci (China) ; 124: 76-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182181

ABSTRACT

Mepanipyrim, an anilinopyrimidine fungicide, has been extensively used to prevent fungal diseases in fruit culture. Currently, research on mepanipyrim-induced toxicity in organisms is still very scarce, especially visual developmental toxicity. Here, zebrafish larvae were employed to investigate mepanipyrim-induced visual developmental toxicity. Intense light and monochromatic light stimuli-evoked escape experiments were used to investigate vision-guided behaviors. Meanwhile, transcriptomic sequencing and real-time quantitative PCR assays were applied to assess the potential mechanisms of mepanipyrim-induced visual developmental toxicity and vision-guided behavioral alteration. Our results showed that mepanipyrim exposure could induce retinal impairment and vision-guided behavioral alteration in larval zebrafish. In addition, the grk1b gene of the phototransduction signaling pathway was found to be a potential aryl hydrocarbon receptor (AhR)-regulated gene. Mepanipyrim-induced visual developmental toxicity was potentially related to the AhR signaling pathway. Furthermore, mepanipyrim-induced behavioral alteration was guided by the visual function, and the effects of mepanipyrim on long and middle wavelength light-sensitive opsins may be the main cause of vision-guided behavioral alteration. Our results provide insights into understanding the relationship between visual development and vision-guided behaviors induced by mepanipyrim exposure.


Subject(s)
Fungicides, Industrial , Water Pollutants, Chemical , Animals , Embryo, Nonmammalian , Fungicides, Industrial/toxicity , Larva , Opsins/metabolism , Opsins/pharmacology , Pyrimidines , Receptors, Aryl Hydrocarbon/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
16.
Ecotoxicol Environ Saf ; 246: 114168, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244174

ABSTRACT

Black phosphorus quantum dots (BPQDs) are considered to have wide application prospects due to their excellent properties. However, there is no study on the effect of BPQDs on glucose metabolism. In this study, blood glucose was significantly increased when mice were continuously intragastrically administered 0.1 and 1 mg/kg bw BPQDs. The blood glucose level of the mice was elevated from Day 7 to Day 28. BPQD exposure also decreased the area under the curve (AUC) of the oral glucose tolerance test (OGTT). After exposure, the pancreas somatic index was increased. Moreover, the serum insulin and glucagon levels were elevated and the relative area of islet ß cells was increased in BPQD-exposed mice, while insulin signaling cascades were reduced in muscle tissues. In summary, our study demonstrated for the first time that BPQD exposure induces glucose disorder and insulin resistance in muscle, which is helpful to understand the biosafety of black phosphorus nanomaterials and promote the sustainable development of nanotechnology.


Subject(s)
Insulin Resistance , Insulins , Quantum Dots , Mice , Animals , Quantum Dots/toxicity , Phosphorus , Blood Glucose
17.
Environ Pollut ; 311: 119986, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36007795

ABSTRACT

RNA N6-methyladenosine (m6A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO2)-induced acute pulmonary injury is associated with the m6A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m6A modification and the bioeffects of several engineered nanoparticles (nTiO2, nAg, nZnO, nFe2O3, and nCuO) were verified thorough in vitro experiments. nFe2O3, nZnO, and nTiO2 exposure significantly increased the global m6A level in A549 cells. Our study further revealed that nTiO2 can induce m6A-mediated acute pulmonary injury. Mechanistically, nTiO2 exposure promoted methyltransferase-like 3 (METTL3)-mediated m6A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m6A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO2 exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m6A upregulation, and the inflammatory response caused by nTiO2 both in vitro and in vivo. In conclusion, our study demonstrates that m6A is a potential intervention target for alleviating the adverse effects of nTiO2-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.


Subject(s)
Lung Injury , Nanoparticles , Humans , Methyltransferases , Nanoparticles/toxicity , RNA , Reactive Oxygen Species , Titanium/toxicity
18.
Sci Total Environ ; 846: 157504, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35870602

ABSTRACT

In recent years, the widespread use of the pesticide cyprodinil has attracted attention due to its harmful effects on aquatic organisms. The purpose of this study was to evaluate the adverse effects of long-term exposure to cyprodinil on the reproductive system of female zebrafish. After the embryos had been treated with 0.1, 1 and 10 µg/L cyprodinil for 180 days, we observed that female fish treated with 1 and 10 µg/L cyprodinil showed decreased sexual attractiveness, a decreased proportion of primordial follicles in the ovary, an increased proportion of mature follicles, and increased egg production. Moreover, exposed females that mated with normal males produced offspring with increased rates of mortality and deformity (the F1 generation). In addition, the levels of gonadotropin and testosterone (T) were increased in females after cyprodinil exposure, especially in the 10 µg/L treated group. After cyprodinil treatment, some key genes in the hypothalamic-pituitary-gonad axis underwent significant changes. For example, gene expression of brain gonadotropin-releasing hormone receptors (gnrhr1, gnrhr2 and gnrhr4) was significantly downregulated after cyprodinil treatment. The study found that expression of the aromatase (cytochrome P450 family 19 subfamily A polypeptide 1a, cyp19a1a) responsible for converting T into estradiol was significantly downregulated after cyprodinil treatment, consistent with elevated T levels in the ovaries and muscles. In summary, these data provide a more comprehensive understanding of the toxicity of cyprodinil and may inform evaluation of the ecotoxicity of cyprodinil to female reproduction at environmentally relevant concentrations.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Female , Gonads , Male , Pyrimidines , Reproduction , Vitellogenins/metabolism , Water Pollutants, Chemical/metabolism , Zebrafish/physiology
19.
Toxics ; 10(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35736895

ABSTRACT

Theabrownin (TB) is a heterogeneous biomacromolecule, extracted from tea, with many functional groups. Importantly, TB possesses diverse health benefits, such as antitumor activity and blood lipid-lowering effects. Presently, the content of TB in tea extract is relatively low. Here, we obtained a deep-processed black tea extract with a high content of TB (close to 80%), which was named Herbt Tea Essences (HTE). Currently, this study was designed to evaluate the biosafety of high-content TB products on mice. We implemented acute and subacute toxic experiments to assess its safety on organs, the serum biochemical and molecular levels. In the acute exposure study, we found that the median lethal dose (LD50) value of HTE was 21.68 g/kg (21.06-24.70 g/kg, greater than 5 g/kg), suggesting that HTE had a low acute toxicity. In the 28-day subacute exposure study, our results showed that no abnormal effects were observed in the 40 and 400 mg/kg/day HTE-treated groups. However, we observed slight nephrotoxicity in the 4000 mg/kg/day HTE-treated group. The HTE-induced nephrotoxic effect might involve the inflammatory response activation mediated by the nuclear transcription factor kappa-B (NF-κB) signaling pathway. This study would provide valuable data for the TB safety assessment and promote this natural biomacromolecule application in daily drinking.

20.
Chemosphere ; 305: 135388, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35718029

ABSTRACT

Diuron, a widely used phenylurea herbicide, has been frequently detected in marine organism and seawater all over the world. But the understanding of potential damage of diuron on reproduction in marine fish is currently not enough. Herein, marine medaka (Oryzias melastigma) were continuously exposed to 0, 5, 50, 500, and 5000 ng/L diuron from embryo (0 dpf) to adult (180 dpf) stage. The results suggested that diuron had an adverse influence on male reproduction for marine medaka, including decreased gonado somatic index, histological changes of testes, decreased mobility of sperm, and reduced fecundity through disrupting the balance of sex hormone and genes expression related to hypothalamus-pituitary-gonadal-liver (HPGL) axis. The reduced fecundity was reflected in abnormal sexual behaviors, further inhibited growth and development of F1 embryo and larvae. Moreover, the proportion of diuron metabolites (DCPMU and DCPU) was increased in fish, but the proportion of diuron was decreased with the increasing of exposure concentration. Diuron, DCPMU, and DCPU was identified as aryl hydrocarbon receptor agonist (AhR) agonist using in silico and in vivo models. DCPMU and DCPU induced the gene expression of AhR signaling and metabolizing enzymes (such as cyp1a1) in the livers. A great deal of major metabolites affected various organs related to HPGL axis of male marine medaka and led to serious reproductive disorders. Consequently, it reveals that long-term exposure to environmentally relevant concentrations of diuron and even AhR agonist pesticides pose a potential ecological risk for marine fish.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Diuron/metabolism , Gonadal Steroid Hormones/metabolism , Male , Oryzias/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Reproduction , Semen , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...