Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 21(212): 20230619, 2024 03.
Article in English | MEDLINE | ID: mdl-38442861

ABSTRACT

Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low-transmission settings before spreading to high-transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low-transmission season were (i) more susceptible to stochastic extinction due to the action of genetic drift, and (ii) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g. neighbouring countries with high levels of resistance) may produce a greater risk during low-transmission periods.


Subject(s)
Genetic Drift , Plasmodium falciparum , Plasmodium falciparum/genetics , Seasons , Clone Cells , Genotype
2.
Nat Commun ; 15(1): 1390, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360803

ABSTRACT

Delaying and slowing antimalarial drug resistance evolution is a priority for malaria-endemic countries. Until novel therapies become available, the mainstay of antimalarial treatment will continue to be artemisinin-based combination therapy (ACT). Deployment of different ACTs can be optimized to minimize evolutionary pressure for drug resistance by deploying them as a set of co-equal multiple first-line therapies (MFT) rather than rotating therapies in and out of use. Here, we consider one potential detriment of MFT policies, namely, that the simultaneous deployment of multiple ACTs could drive the evolution of different resistance alleles concurrently and that these resistance alleles could then be brought together by recombination into double-resistant or triple-resistant parasites. Using an individual-based model, we compare MFT and cycling policies in malaria transmission settings ranging from 0.1% to 50% prevalence. We define a total risk measure for multi-drug resistance (MDR) by summing the area under the genotype-frequency curves (AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total MDR risk ranges from statistically similar to 80% lower under MFT policies than under cycling policies, irrespective of whether resistance is imported or emerges de novo. At 0.1% prevalence, there is little statistical difference in MDR risk between MFT and cycling.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Folic Acid Antagonists/therapeutic use , Genotype , Malaria/parasitology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics
3.
medRxiv ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37905102

ABSTRACT

In the thirteen years since the first report of pfhrp2-deleted parasites in 2010, the World Health Organization (WHO) has found that 40 of 47 countries surveyed worldwide have reported pfhrp2/3 gene deletions. Due to a high prevalence of pfhrp2/3 deletions causing false-negative HRP2 RDTs, in the last five years, Eritrea, Djibouti and Ethiopia have switched or started switching to using alternative RDTs, that target pan-specific-pLDH or P. falciparum specific-pLDH alone of in combination with HRP2. However, manufacturing of alternative RDTs has not been brought to scale and there are no WHO prequalified combination tests that use Pf-pLDH instead of HRP2 for P. falciparum detection. For these reasons, the continued spread of pfhrp2/3 deletions represents a growing public health crisis that threatens efforts to control and eliminate P. falciparum malaria. National malaria control programmes, their implementing partners and test developers desperately seek pfhrp2/3 deletion data that can inform their immediate and future resource allocation. In response, we use a mathematical modelling approach to evaluate the global risk posed by pfhrp2/3 deletions and explore scenarios for how deletions will continue to spread in Africa. We incorporate current best estimates of the prevalence of pfhrp2/3 deletions and conduct a literature review to estimate model parameters known to impact the selection of pfhrp2/3 deletions for each malaria endemic country. We identify 20 countries worldwide to prioritise for surveillance and future deployment of alternative RDT, based on quickly selecting for pfhrp2/3 deletions once established. In scenarios designed to explore the continued spread of deletions in Africa, we identify 10 high threat countries that are most at risk of deletions both spreading to and subsequently being rapidly selected for. If HRP2-based RDTs continue to be relied on for malaria case management, we predict that the major route for pfhrp2 deletions to spread is south out from the current hotspot in the Horn of Africa, moving through East Africa over the next 20 years. We explore the variation in modelled timelines through an extensive parameter sensitivity analysis and despite wide uncertainties, we identify three countries that have not yet switched RDTs (Senegal, Zambia and Kenya) that are robustly identified as high risk for pfhrp2/3 deletions. These results provide a refined and updated prediction model for the emergence of pfhrp2/3 deletions in an effort to help guide pfhrp2/3 policy and prioritise future surveillance efforts and innovation.

4.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961194

ABSTRACT

Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low transmission settings before spreading to high transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones, and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low transmission season were, (1) more susceptible to stochastic extinction due to the action of random genetic drift, and (2) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g., neighboring countries with high levels of resistance) may produce a greater risk during low-transmission periods.

5.
Nat Med ; 29(11): 2775-2784, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735560

ABSTRACT

Artemisinin combination therapies (ACTs) are highly effective at treating uncomplicated Plasmodium falciparum malaria, but the emergence of the new pfkelch13 R561H mutation in Rwanda, associated with delayed parasite clearance, suggests that interventions are needed to slow its spread. Using a Rwanda-specific spatial calibration of an individual-based malaria model, we evaluate 26 strategies aimed at minimizing treatment failures and delaying the spread of R561H after 3, 5 and 10 years. Lengthening ACT courses and deploying multiple first-line therapies (MFTs) reduced treatment failures after 5 years when compared to the current approach of a 3-d course of artemether-lumefantrine. The best among these options (an MFT policy) resulted in median treatment failure counts that were 49% lower and a median R561H allele frequency that was 0.15 lower than under baseline. New approaches to resistance management, such as triple ACTs or sequential courses of two different ACTs, were projected to have a larger impact than longer ACT courses or MFT; these were associated with median treatment failure counts in 5 years that were 81-92% lower than the current approach. A policy response to currently circulating artemisinin-resistant genotypes in Africa is urgently needed to prevent a population-wide rise in treatment failures.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Plasmodium falciparum/genetics , Rwanda/epidemiology , Artemether/therapeutic use , Drug Resistance/genetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Mutation/genetics
6.
Sci Rep ; 13(1): 321, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609584

ABSTRACT

Malaria due to the Plasmodium falciparum parasite remains a threat to human health despite eradication efforts and the development of anti-malarial treatments, such as artemisinin combination therapies. Human movement and migration have been linked to the propagation of malaria on national scales, highlighting the need for the incorporation of human movement in modeling efforts. Spatially couped individual-based models have been used to study how anti-malarial resistance evolves and spreads in response to drug policy changes; however, as the spatial scale of the model increases, the challenges associated with modeling of movement also increase. In this paper we discuss the development, calibration, and validation of a movement model in the context of a national-scale, spatial, individual-based model used to study the evolution of drug resistance in the malaria parasite.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Burkina Faso/epidemiology , Malaria/drug therapy , Malaria/epidemiology , Plasmodium falciparum , Drug Therapy, Combination , Drug Resistance , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology
7.
PLOS Glob Public Health ; 2(2): e0000111, 2022.
Article in English | MEDLINE | ID: mdl-36962300

ABSTRACT

Artemisinin combination therapies (ACTs) are the WHO-recommended first-line therapies for uncomplicated Plasmodium falciparum malaria. The emergence and spread of artemisinin-resistant genotypes is a major global public health concern due to the increased rate of treatment failures that result. This is particularly germane for WHO designated 'high burden to high impact' (HBHI) countries, such as Burkina Faso, where there is increased emphasis on improving guidance, strategy, and coordination of local malaria response in an effort to reduce the prevalence of P. falciparum malaria. To explore how the increased adoption of ACTs may affect the HBHI malaria setting of Burkina Faso, we added spatial structure to a validated individual-based stochastic model of P. falciparum transmission and evaluated the long-term effects of increased ACT use. We explored how de novo emergence of artemisinin-resistant genotypes, such as pfkelch13 580Y, may occur under scenarios in which private-market drugs are eliminated or multiple first-line therapies (MFT) are deployed. We found that elimination of private market drugs would result in lower treatment failures rates (between 11.98% and 12.90%) when compared to the status quo (13.11%). However, scenarios incorporating MFT with equal deployment of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PPQ) may accelerate near-term drug resistance (580Y frequency ranging between 0.62 to 0.84 in model year 2038) and treatment failure rates (26.69% to 34.00% in 2038), due to early failure and substantially reduced treatment efficacy resulting from piperaquine-resistant genotypes. A rebalanced MFT approach (90% AL, 10% DHA-PPQ) results in approximately equal long-term outcomes to using AL alone but may be difficult to implement in practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...