Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 52016 05 26.
Article in English | MEDLINE | ID: mdl-27228154

ABSTRACT

Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating - a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility.


Subject(s)
Antigenic Variation , DNA Replication , Telomere/metabolism , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/biosynthesis , DNA Breaks , DNA Repair , RecQ Helicases/metabolism
2.
Parasit Vectors ; 8: 435, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26303927

ABSTRACT

BACKGROUND: Trypanosoma cruzi, causative agent of Chagas disease, displays high intraspecific genetic diversity: six genetic lineages or discrete typing units (DTUs) are currently recognized, termed TcI through TcVI. Each DTU presents a particular distribution pattern across the Americas, and is loosely associated with different transmission cycles and hosts. Several DTUs are known to circulate in Central America. It has been previously suggested that TcI infection is benign and does not lead to chronic chagasic cardiomyopathy (CCC). FINDINGS: In this study, we genotyped T. cruzi parasites circulating in the blood and from explanted cardiac tissue of an El Salvadorian patient who developed reactivation Chagas disease while on immunosuppressive medications after undergoing heart transplant in the U.S. as treatment for end-stage CCC. Parasite typing was performed through molecular methods (restriction fragment length polymorphism of polymerase reaction chain amplified products, microsatellite typing, maxicircle sequence typing and low-stringency single primer PCR, [LSSP-PCR]) as well as lineage-specific serology. We show that the parasites infecting the patient belong to the TcI DTU exclusively. Our data indicate that the parasites isolated from the patient belong to a genotype frequently associated with human infection throughout the Americas (TcIDOM). CONCLUSIONS: Our results constitute compelling evidence in support of TcI DTU's ability to cause end-stage CCC and help dispel any residual bias that infection with this lineage is benign, pointing to the need for increased surveillance for dissemination of this genotype in endemic regions, the USA and globally.


Subject(s)
Chagas Cardiomyopathy/parasitology , Heart Transplantation , Trypanosoma cruzi/classification , Trypanosoma cruzi/genetics , Adult , DNA, Protozoan/isolation & purification , Humans , Male , Nifurtimox/adverse effects , Nifurtimox/therapeutic use , Nitroimidazoles/therapeutic use , Phylogeny , Recurrence , Trypanocidal Agents/adverse effects , Trypanocidal Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...