Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 223(Pt 1): 121671, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33303135

ABSTRACT

Vegetable wastes represent an inexpensive and sustainable source of valuable bioproducts for several applications. Natural micro-porous and fibrous materials can be obtained from a very cheap and abundant cellulosic bio-waste. Here we demonstrated that vegetable waste derivatives can be suitable as scaffolds for biosensors and 3D cell growth. Many studies have been addressed to fabricate biocompatible 3D scaffolds for mammalian stem cells cultures and develop novel systems able to reproduce the complexity of the in vivo microenvironment. Many of these products are proprietary, expensive or require chemical synthesis. The recycling and revaluation of vegetable derived tissues to fabricate scaffolds for analytical biosensors 3D stem cell cultures platforms may represent a very low-cost approach for toxicological and environmental analyses. In this approach, potential applications of vegetable-derived tissue for biosensing and 3D stem cell cultures were investigated. Micro-structured scaffolds from stalk of broccoli, named BrcS, were either functionalized for production of enzymatic 3D-biosensors or preconditioned to be used them as 3D-scaffolds for human mesenchymal stem cells cultures. The conditions to fabricate 3D-biosensors and scaffolds for cell growth were here optimized studying all analytical parameters and demonstrating the feasibility to combine these two properties for an innovative solution to ennoble vegetable wastes.


Subject(s)
Biosensing Techniques , Tissue Scaffolds , Animals , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Humans , Stem Cells , Vegetables
2.
Front Chem ; 8: 587842, 2020.
Article in English | MEDLINE | ID: mdl-33195087

ABSTRACT

The solvent driven aggregation of porphyrin derivatives, covalently linked to a L- or D-prolinate enantiomer, results in the stereospecific formation of species featuring remarkable supramolecular chirality, as a consequence of reading and amplification of the stereochemical information stored in the proline-appended group. Spectroscopic, kinetic, and topographic SEM studies gave important information on the aggregation processes, and on the structures of the final chiral architectures. The results obtained may be the seeds for the construction of stereoselective sensors aiming at the detection, for example, of novel emergent pollutants from agrochemical, food, and pharmaceutical industry.

3.
Int J Mol Sci ; 21(22)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202819

ABSTRACT

Supramolecular chirality is one of the most important issues in different branches of science and technology, as stereoselective molecular recognition, catalysis, and sensors. In this paper, we report on the self-assembly of amphiphilic porphyrin derivatives possessing a chiral information on the periphery of the macrocycle (i.e., D- or L-proline moieties), in the presence of chiral amines as co-solute, such as chiral benzylamine derivatives. The aggregation process, steered by hydrophobic effect, has been studied in aqueous solvent mixtures by combined spectroscopic and topographic techniques. The results obtained pointed out a dramatic effect of these ligands on the morphology and on the supramolecular chirality of the final self-assembled structures. Scanning electron microscopy topography, as well as fluorescence microscopy studies revealed the formation of rod-like structures of micrometric size, different from the fractal structures formerly observed when the self-assembly process is carried out in the absence of chiral amine co-solutes. On the other hand, comparative experiments with an achiral porphyrin analogue strongly suggested that the presence of the prolinate moiety is mandatory for the achievement of the observed highly organized suprastructures. The results obtained would be of importance for unraveling the intimate mechanisms operating in the selection of the homochirality, and for the preparation of sensitive materials for the detection of chiral analytes, with tunable stereoselectivity and morphology.


Subject(s)
Porphyrins/chemistry , Stereoisomerism
4.
Small ; 15(49): e1904399, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31592571

ABSTRACT

As the hole transport layer (HTL) for perovskite solar cells (PSCs), poly(3-hexylthiophene) (P3HT) has been attracting great interest due to its low-cost, thermal stability, oxygen impermeability, and strong hydrophobicity. In this work, a new doping strategy is developed for P3HT as the HTL in triple-cation/double-halide ((FA1-x-y MAx Csy )Pb(I1-x Brx )3 ) mesoscopic PSCs. Photovoltaic performance and stability of solar cells show remarkable enhancement using a composition of three dopants Li-TFSI, TBP, and Co(III)-TFSI reaching power conversion efficiencies of 19.25% on 0.1 cm2 active area, 16.29% on 1 cm2 active area, and 13.3% on a 43 cm2 active area module without using any additional absorber layer or any interlayer at the PSK/P3HT interface. The results illustrate the positive effect of a cobalt dopant on the band structure of perovskite/P3HT interfaces leading to improved hole extraction and a decrease of trap-assisted recombination. Non-encapsulated large area devices show promising air stability through keeping more than 80% of initial efficiency after 1500 h in atmospheric conditions (relative humidity ≈ 60%, r.t.), whereas encapsulated devices show more than >500 h at 85 °C thermal stability (>80%) and 100 h stability against continuous light soaking (>90%). The boosted efficiency and the improved stability make P3HT a good candidate for low-cost large-scale PSCs.

5.
ACS Appl Mater Interfaces ; 11(12): 12077-12087, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30835426

ABSTRACT

Recognition of enantiomers is one of the most arduous challenges in chemical sensor development. Although several chiral systems exist, their effective exploitation as the sensitive layer in chemical sensors is hampered by several practical implications that hinder stereoselective recognition in solid state. In this paper, we report a new methodology to efficiently prepare chiral solid films, by using a hybrid material approach where chiral porphyrin derivatives are grafted onto zinc oxide nanoparticles. Circular dichroism (CD) evidences that the solid-state film of the material retains supramolecular chirality due to porphyrin interactions, besides an additional CD feature in correspondence of the absorbance of ZnO (375 nm), suggesting the induction of chirality in the underlying zinc oxide nanoparticles. The capability of hybrid material to detect and recognize vapors of enantiomer pairs was evaluated by fabricating gas sensors based on quartz microbalances. Chiral films of porphyrin on its own were used for comparison. The sensor based on functionalized nanostructures presented a remarkable stereoselectivity in the recognition of limonene enantiomers, whose ability to intercalate in the porphyrin layers makes this terpene an optimal chiral probe. The chiroptical and stereoselective properties of the hybrid material confirm that the use of porphyrin-capped ZnO nanostructures is a viable route for the formation of chiral selective surfaces.

6.
Chempluschem ; 84(2): 154-160, 2019 02.
Article in English | MEDLINE | ID: mdl-31950693

ABSTRACT

Two different copper and gallium arylcorroles have been functionalized using the Vilsmeier-Haack reaction. A further Knoevenagel reaction with cyanoacetic acid was performed on both complexes, affording the desired products with yields above 90 %. The newly synthesized compounds have been thoroughly characterized by a combination of spectroscopic methods, optical analyses, and X-ray crystallography. Moreover, they have been tested as anchoring groups for the hydrothermal synthesis of ZnO nanoparticles. The morphology of the heterogeneous composites has been studied by SEM, EDS and fluorescence microscopy analyses, thus confirming the presence of the corrole macrocycle in the hybrid material.

SELECTION OF CITATIONS
SEARCH DETAIL
...