Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 88(9): 093502, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964174

ABSTRACT

After several experimental campaigns in the Kyushu University Experiment with Steady-state Spherical Tokamak (QUEST), the originally stainless steel plasma-facing wall (PFW) becomes completely covered with a deposited film composed of mixture materials, such as iron, chromium, carbon, and tungsten. In this work, an innovative colorimetry-based method was developed to measure the thickness of the deposited film on the actual QUEST wall. Because the optical constants of the deposited film on the PFW were position-dependent and the extinction coefficient k1 was about 1.0-2.0, which made the probing light not penetrate through some thick deposited films, the colorimetry method developed can only provide a rough value range of thickness of the metal-containing film deposited on the actual PFW in QUEST. However, the use of colorimetry is of great benefit to large-area inspections and to radioactive materials in future fusion devices that will be strictly prohibited from being taken out of the limited area.

2.
Rev Sci Instrum ; 86(10): 103507, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520955

ABSTRACT

In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2(3)S-2(3)P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.

3.
Rev Sci Instrum ; 86(3): 033505, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832227

ABSTRACT

An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported.

4.
Rev Sci Instrum ; 85(11): 11D842, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430255

ABSTRACT

A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

5.
Rev Sci Instrum ; 85(11): 11E808, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430373

ABSTRACT

A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversion region and its position is successfully reconstructed using phase array technique which is done in post processing.

6.
Rev Sci Instrum ; 84(7): 073509, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902065

ABSTRACT

The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s-2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

7.
Rev Sci Instrum ; 83(10): 10E524, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127031

ABSTRACT

A fast visible imaging system is installed on the spherical tokamak QUEST to study edge turbulence. The camera uses a complementary metal-oxide semiconductor detector with a maximum resolution of 1024 × 1024 at 7000 frames∕s (fps) and can achieve 775 kfps at a resolution of 128 × 24. In this paper, we present the salient features of the system and its application to study edge turbulence in 8.2 GHz ECRH driven slab plasma, without plasma current. Vertical magnetic field (B(z)) topology is varied with three sets of poloidal field (PF) coils and the variation in the edge turbulence is investigated as a function of the B(z) strength and curvature. Fluctuation amplitude was highest for the shallow PF well. Cross-correlation coefficient shows distinct coherent mode along z direction at the steep density gradient region and it grows with the PF mirror ratio.

8.
Phys Rev Lett ; 96(18): 185003, 2006 May 12.
Article in English | MEDLINE | ID: mdl-16712369

ABSTRACT

The first successful high power heating of a high dielectric constant spherical tokamak plasma by an electron Bernstein wave (EBW) is reported. An EBW was excited by mode conversion (MC) of an mode cyclotron wave injected from the low magnetic field side of the TST-2 spherical tokamak. Evidence of electron heating was observed as increases in the stored energy and soft x-ray emission. The increased emission was concentrated in the plasma core region. A heating efficiency of over 50% was achieved, when the density gradient in the MC region was sufficiently steep.

9.
SELECTION OF CITATIONS
SEARCH DETAIL
...