Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38804660

ABSTRACT

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Subject(s)
Allergens , Dendritic Cells , Epithelial Cells , Mustard Plant , Seeds , Dendritic Cells/immunology , Dendritic Cells/drug effects , Humans , Seeds/chemistry , Allergens/immunology , Epithelial Cells/immunology , Epithelial Cells/drug effects , Intestinal Mucosa/immunology , Coculture Techniques , Antigens, Plant/immunology , Mast Cells/immunology , Mast Cells/drug effects , Immunoglobulin E/immunology , Cytokines/metabolism , Plant Proteins/immunology , Plant Proteins/pharmacology
2.
Nutrients ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674882

ABSTRACT

BACKGROUND: Tropomyosins (TM) from vertebrates are generally non-allergenic, while invertebrate homologs are potent pan-allergens. This study aims to compare the risk of sensitization between chicken TM and shrimp TM through affecting the intestinal epithelial barrier integrity and type 2 mucosal immune activation. METHODS: Epithelial activation and/or barrier effects upon exposure to 2-50 µg/mL chicken TM, shrimp TM or ovalbumin (OVA) as a control allergen, were studied using Caco-2, HT-29MTX, or HT-29 intestinal epithelial cells. Monocyte-derived dendritic cells (moDC), cocultured with HT-29 cells or moDC alone, were exposed to 50 µg/mL chicken TM or shrimp TM. Primed moDC were cocultured with naïve Th cells. Intestinal barrier integrity (TEER), gene expression, cytokine secretion and immune cell phenotypes were determined in these human in vitro models. RESULTS: Shrimp TM, but not chicken TM or OVA exposure, profoundly disrupted intestinal barrier integrity and increased alarmin genes expression in Caco-2 cells. Proinflammatory cytokine secretion in HT-29 cells was only enhanced upon shrimp TM or OVA, but not chicken TM, exposure. Shrimp TM enhanced the maturation of moDC and chemokine secretion in the presence or absence of HT-29 cells, while only in the absence of epithelial cells chicken TM activated moDC. Direct exposure of moDC to shrimp TM increased IL13 and TNFα secretion by Th cells cocultured with these primed moDC, while shrimp TM exposure via HT-29 cells cocultured with moDC sequentially increased IL13 expression and IL4 secretion in Th cells. CONCLUSIONS: Shrimp TM, but not chicken TM, disrupted the epithelial barrier while triggering type 2 mucosal immune activation, both of which are key events in allergic sensitization.


Subject(s)
Allergens , Chickens , Coculture Techniques , Dendritic Cells , Intestinal Mucosa , Th2 Cells , Tropomyosin , Animals , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Caco-2 Cells , Tropomyosin/immunology , Allergens/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , HT29 Cells , Th2 Cells/immunology , Cytokines/metabolism , Penaeidae/immunology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/immunology , Ovalbumin
3.
Pediatr Allergy Immunol ; 34(11): e14043, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38010006

ABSTRACT

The worldwide rising prevalence of food allergy is a major public health concern. Standard care consists of allergen avoidance and rescue medication upon accidental exposure. Oral immunotherapy (OIT) is increasingly being studied as a treatment option. Although desensitization (an increased reaction threshold) is often achieved during OIT, sustained unresponsiveness (SU; clinical nonreactivity after finishing OIT) is not achieved in most patients. A few studies have investigated the effectiveness of OIT in children younger than 4 years of age (early = e-OIT) and have shown a much more favorable outcome in terms of SU development. Together with food allergy prevention studies, which have demonstrated high efficacy of early oral allergen exposure, the outcomes of e-OIT studies indicate an early-life window of opportunity to achieve SU, allowing unrestricted dietary intake. However, the underlying mechanism of the high effectiveness of e-OIT is not understood yet. Both cohort and OIT studies indicate early-life immune plasticity. An immature food-allergic response in the first years of life seems to be a major driver of this immune plasticity, along with a higher tolerogenic immunological state. Allergy maturation can likely be disrupted effectively by early intervention, preventing the development of persistent food allergy. Upcoming studies will provide important additional data on the safety, feasibility, and effectiveness of e-OIT. Combined with immune mechanistic studies, this should inform the implementation of e-OIT.


Subject(s)
Desensitization, Immunologic , Food Hypersensitivity , Humans , Child, Preschool , Food , Allergens , Eating , Administration, Oral
4.
Biomolecules ; 13(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36830632

ABSTRACT

Proper early life immune development creates a basis for a healthy and resilient immune system, which balances immune tolerance and activation. Deviations in neonatal immune maturation can have life-long effects, such as development of allergic diseases. Evidence suggests that human milk oligosaccharides (HMOS) possess immunomodulatory properties essential for neonatal immune maturation. To understand the immunomodulatory properties of enzymatic or bacterial produced HMOS, the effects of five HMOS (2'FL, 3FL, 3'SL, 6'SL and LNnT), present in human milk have been studied. A PBMC immune model, the IEC barrier model and IEC/PBMC transwell coculture models were used, representing critical steps in mucosal immune development. HMOS were applied to IEC cocultured with activated PBMC. In the presence of CpG, 2'FL and 3FL enhanced IFNγ (p < 0.01), IL10 (p < 0.0001) and galectin-9 (p < 0.001) secretion when added to IEC; 2'FL and 3FL decreased Th2 cell development while 3FL enhanced Treg polarization (p < 0.05). IEC were required for this 3FL mediated Treg polarization, which was not explained by epithelial-derived galectin-9, TGFß nor retinoic acid secretion. The most pronounced immunomodulatory effects, linking to enhanced type 1 and regulatory mediator secretion, were observed for 2'FL and 3FL. Future studies are needed to further understand the complex interplay between HMO and early life mucosal immune development.


Subject(s)
Leukocytes, Mononuclear , Milk, Human , Infant, Newborn , Humans , Milk, Human/metabolism , Coculture Techniques , Leukocytes, Mononuclear/metabolism , Oligosaccharides/pharmacology , Galectins/metabolism
5.
Eur J Immunol ; 53(3): e2250083, 2023 03.
Article in English | MEDLINE | ID: mdl-36550071

ABSTRACT

T helper (Th) 9 cells, characterized by robust secretion of IL-9, have been increasingly associated with allergic diseases. However, whether and how Th9 cells are modulated by environmental stimuli remains poorly understood. In this study, we show that in vitro exposure of human PBMCs or isolated CD4 T-cells to Staphylococcus (S.) aureus-derived factors, including its toxins, potently enhances Th9 cell frequency and IL-9 secretion. Furthermore, as revealed by RNA sequencing analysis, S. aureus increases the expression of Th9-promoting factors at the transcriptional level, such as FOXO1, miR-155, and TNFRSF4. The addition of retinoic acid (RA) dampens the Th9 responses promoted by S. aureus and substantially changes the transcriptional program induced by this bacterium, while also altering the expression of genes associated with allergic inflammation. Together, our results demonstrate a strong influence of microbial and dietary factors on Th9 cell polarization, which may be important in the context of allergy development and treatment.


Subject(s)
Hypersensitivity , Staphylococcus aureus , Humans , Interleukin-9/genetics , T-Lymphocytes, Helper-Inducer/metabolism , Inflammation/metabolism
6.
J Innate Immun ; : 1-18, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36215948

ABSTRACT

Allergic sensitization starts with epithelial cell activation driving dendritic cells (DCs) to instruct T helper 2 (Th2) cell polarization. Food allergens trigger intestinal epithelial cell (IEC) activation. Human milk oligosaccharides may temper the allergic phenotype by shaping mucosal immune responses.We investigated in vitro mucosal immune development after allergen exposure by combining ovalbumin (OVA)-preexposed IEC with monocyte-derived DCs (OVA-IEC-DCs) and subsequent coculture of OVA-IEC-DCs with Th cells. IECs were additionally preincubated with 2'FL or 3FL.OVA activation increased IEC cytokine secretion. OVA-IEC-DCs instructed both IL13 (p < 0.05) and IFNγ (p < 0.05) secretion from Th cells. 2'FL and 3FL permitted OVA-induced epithelial activation, but 2'FL-OVA-IEC-DCs boosted inflammatory and regulatory T-cell development. 3FL-OVA-IEC lowered IL12p70 and IL23 in DCs and suppressed IL13 (p < 0.005) in T cells, while enhancing IL17 (p < 0.001) and IL10 (p < 0.005).These results show that OVA drives Th2- and Th1-type immune responses via activation of IECs in this model. 2'FL and 3FL differentially affect OVA-IEC-driven immune effects. 2'FL boosted overall T-cell OVA-IEC immunity via DC enhancing inflammatory and regulatory responses. 3FL-OVA-IEC-DCs silenced IL13, shifting the balance towards IL17 and IL10.This model demonstrates the contribution of IEC to OVA Th2-type immunity. 2'FL and 3FL modulate the OVA-induced activation in this novel model to study allergic sensitization.

7.
Front Immunol ; 13: 1073034, 2022.
Article in English | MEDLINE | ID: mdl-36700233

ABSTRACT

Background: The global demand of sustainable food sources leads to introduction of novel foods on the market, which may pose a risk of inducing allergic sensitization. Currently there are no validated in vitro assays mimicking the human mucosal immune system to study sensitizing allergenicity risk of novel food proteins. The aim of this study was to introduce a series of sequential human epithelial and immune cell cocultures mimicking key immune events after exposure to the common food allergen ovalbumin from intestinal epithelial cell (IEC) activation up to mast cell degranulation. Methods: This in vitro human mucosal food sensitizing allergenicity model combines crosstalk between IEC and monocyte-derived dendritic cells (moDC), followed by coculture of the primed moDCs with allogenic naïve CD4+ T cells. During subsequent coculture of primed CD4+ T cells with naïve B cells, IgE isotype-switching was monitored and supernatants were added to primary human mast cells to investigate degranulation upon IgE crosslinking. Mediator secretion and surface marker expression of immune cells were determined. Results: Ovalbumin activates IEC and underlying moDCs, both resulting in downstream IgE isotype-switching. However, only direct exposure of moDCs to ovalbumin drives Th2 polarization and a humoral B cell response allowing for IgE mediated mast cell degranulation, IL13 and IL4 release in this sequential DC-T cell-B cell-mast cell model, indicating also an immunomodulatory role for IEC. Conclusion: This in vitro coculture model combines multiple key events involved in allergic sensitization from epithelial cell to mast cell, which can be applied to study the allergic mechanism and sensitizing capacity of proteins.


Subject(s)
Allergens , Food Hypersensitivity , Humans , Ovalbumin , Intestines , Immunoglobulin E
8.
Front Immunol ; 11: 801, 2020.
Article in English | MEDLINE | ID: mdl-32457747

ABSTRACT

The prevalence and incidence of allergic diseases is rising and these diseases have become the most common chronic diseases during childhood in Westernized countries. Early life forms a critical window predisposing for health or disease. Therefore, this can also be a window of opportunity for allergy prevention. Postnatally the gut needs to mature, and the microbiome is built which further drives the training of infant's immune system. Immunomodulatory components in breastmilk protect the infant in this crucial period by; providing nutrients that contain substrates for the microbiome, supporting intestinal barrier function, protecting against pathogenic infections, enhancing immune development and facilitating immune tolerance. The presence of a diverse human milk oligosaccharide (HMOS) mixture, containing several types of functional groups, points to engagement in several mechanisms related to immune and microbiome maturation in the infant's gastrointestinal tract. In recent years, several pathways impacted by HMOS have been elucidated, including their capacity to; fortify the microbiome composition, enhance production of short chain fatty acids, bind directly to pathogens and interact directly with the intestinal epithelium and immune cells. The exact mechanisms underlying the immune protective effects have not been fully elucidated yet. We hypothesize that HMOS may be involved in and can be utilized to provide protection from developing allergic diseases at a young age. In this review, we highlight several pathways involved in the immunomodulatory effects of HMOS and the potential role in prevention of allergic diseases. Recent studies have proposed possible mechanisms through which HMOS may contribute, either directly or indirectly, via microbiome modification, to induce oral tolerance. Future research should focus on the identification of specific pathways by which individual HMOS structures exert protective actions and thereby contribute to the capacity of the authentic HMOS mixture in early life allergy prevention.


Subject(s)
Hypersensitivity/immunology , Hypersensitivity/prevention & control , Immunomodulation , Milk, Human/immunology , Oligosaccharides/immunology , Female , Gastrointestinal Microbiome/immunology , Humans , Hypersensitivity/epidemiology , Hypersensitivity/microbiology , Immune Tolerance , Infant , Infant, Newborn , Prebiotics , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...