Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 359: 142315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735494

ABSTRACT

The fate and distribution of environmental contaminants includes bioaccumulation within marine organisms. A deceased 4-m long adult female bluntnose sixgill shark, pregnant with 72 pups, was recovered from Coles Bay on Vancouver Island, BC, Canada in 2019. This specimen provided a unique opportunity to examine maternal transfer of contaminants in a yolk-sac viviparous shark species. Liver subsamples of the adult and offspring were analyzed for 18 targeted inorganic elements by inductively coupled plasma optical emission spectroscopy (ICP-OES) and 21 targeted perfluoroalkyl substances (PFAS) by liquid chromatography-electrospray ionization-high resolution mass spectrometry (LC-ESI-Orbitrap MS). The maternal-offspring transfer efficiencies in liver tissue were subsequently examined for both contaminant classes. Concentrations of all detectable metals apart from calcium and magnesium were found to be higher in the mother compared to the offspring, including substantial levels of toxic cadmium (6 ± 2 mg kg-1 dw) and lead (7 ± 3 mg kg-1 dw). Conversely, high maternal transfer efficiencies were observed for PFAS (i.e., ΣPFAS = 71 ± 9 ng g-1 ww in offspring compared to 13 ± 9 ng g-1 ww in the mother). This study highlighted the unique maternal transfer characteristics of PFAS in bluntnose sixgill sharks depending on the structure of the polar head group, with greater liver-to-liver transfer efficiencies observed for perfluorocarboxylic acids (PFCAs) than perfluorosulfonic acids (PFSAs) of the same fluorocarbon chain length.


Subject(s)
Fluorocarbons , Liver , Sharks , Water Pollutants, Chemical , Animals , Sharks/metabolism , Female , Fluorocarbons/metabolism , Liver/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Metals/metabolism , Trace Elements/metabolism , Trace Elements/analysis , Environmental Monitoring , Pregnancy
2.
Environ Sci Process Impacts ; 25(7): 1169-1180, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37313682

ABSTRACT

Microplastics are environmentally ubiquitous and their role in the fate and distribution of trace contaminants is of emerging concern. We report the first use of membrane introduction mass spectrometry to directly monitor the rate and extent of microplastic-contaminant sorption. Target contaminant (naphthalene, anthracene, pyrene, and nonylphenol) sorption behaviours were examined at nanomolar concentrations with four plastic types: low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Under the conditions employed here, short-term sorption kinetics were assessed using on-line mass spectrometry for up to one hour. Subsequent sorption was followed by periodically measuring contaminant concentrations for up to three weeks. Short-term sorption followed first order kinetics with rate constants that scaled with hydrophobicity for the homologous series of polycyclic aromatic hydrocarbons (PAHs). Sorption rate constants on LDPE for equimolar solutions of naphthalene, anthracene, and pyrene were 0.5, 2.0, and 2.2 h-1, respectively, while nonylphenol did not sorb to pristine plastics over this time period. Similar trends among contaminants were observed for other pristine plastics with 4- to 10-fold faster sorption rates associated with LDPE when compared to PS and PP. Sorption was largely complete after three weeks, with the percent analyte sorbed ranging from 40-100% across various microplastic-contaminant combinations. Photo-oxidative ageing of LDPE had little effect on PAH sorption. However, a marked increase in nonylphenol sorption was consistent with increased hydrogen-bonding interactions. This work provides kinetic insights into surface interactions and describes a powerful experimental platform to directly observe contaminant sorption behaviours in complex samples under a variety of environmentally relevant conditions.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/analysis , Microplastics , Polyethylene , Adsorption , Water Pollutants, Chemical/analysis , Naphthalenes/analysis , Pyrenes/analysis , Polystyrenes/chemistry , Polypropylenes , Mass Spectrometry , Anthracenes/analysis
3.
Environ Sci Process Impacts ; 24(1): 52-61, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34904601

ABSTRACT

Microplastics in the environment are an emerging concern due to impacts on human and environmental health. In addition to direct effects on biota, microplastics influence the fate and distribution of trace organic contaminants through sorption and transport. Environmental weathering may influence the rate and extent of chemical sorption. Changes in the surface characteristics of four common plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS) were followed under the influence of both artificial light (UV-B) and natural sunlight for up to six months. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were collected at regular intervals. Principal component analysis (PCA) of the full dataset of UV-B weathered samples (n >500 spectra) simultaneously discriminated plastic type and extent of photochemical weathering. The magnitude of PCA scores correlated with exposure time and the loadings were consistent with surface chemistry changes including photooxidation. Projecting sunlight and UV-C exposed samples onto this PCA model demonstrated that similar chemical changes occurred, albeit at different rates. The results were compared to the carbonyl index (CI) with similar weathering trends indicating PP weathered at a faster initial rate than LDPE and HDPE. We propose that a multivariate approach is more widely applicable than CI as illustrated by PS, which lacked a stable reference peak. Kinetic analysis of the time series indicated that outdoor weathering occurred 5-12 times slower than the artificial exposure used here, depending on the plastic and the light source employed. The results provide unique insights into weathering processes and the photochemical age of naturally weathered plastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Aging , Humans , Kinetics , Multivariate Analysis , Plastics , Water Pollutants, Chemical/analysis
4.
Anal Chem ; 91(18): 11916-11922, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31403767

ABSTRACT

Current mass spectrometry-based methodologies for synthetic organic reaction monitoring largely use electrospray ionization (ESI), or other related atmospheric pressure ionization-based approaches. Monitoring of complex, heterogeneous systems may be problematic because of sampling hardware limitations, and many relevant analytes (neutrals) exhibit poor ESI performance. An alternative monitoring strategy addressing this significant impasse is condensed phase membrane introduction mass spectrometry using liquid electron ionization (CP-MIMS-LEI). In CP-MIMS, a semipermeable silicone membrane selects hydrophobic neutral analytes, rejecting particulates and charged chemical components. Analytes partition through the membrane, and are then transported to the LEI interface for sequential nebulization, vaporization, and ionization. CP-MIMS and LEI are both ideal for continuous monitoring applications of hydrophobic neutral molecules. We demonstrate quantitative reaction monitoring of harsh, complex reaction mixtures (alkaline, acidic, heterogeneous) in protic and aprotic organic solvents. Also presented are solvent-membrane compatibility investigations and, in situ quantitative monitoring of catalytic oxidation and alkylation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...