Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 35(6): 790-803, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38750635

ABSTRACT

Tumor imaging and delivery of therapeutic agents may be achieved by designing high-affinity and high-selectivity compounds recognizing a tumor cell-expressing biomarker, such as carbonic anhydrase IX (CA IX). The CAIX, overexpressed in many hypoxic solid tumors, helps adjust to the energy requirements of the hypoxic environment, reduces intracellular acidification, and participates in the metastatic invasion of adjacent tissues. Here, we designed a series of sulfonamide compounds bearing CAIX-recognizing, high-affinity, and high-selectivity groups conjugated via a PEG linker to near-infrared (NIR) fluorescent probes used in the clinic for optically guided cancer surgery. We determined compound affinities for CAIX and other 11 catalytically active CA isozymes by the thermal shift assay and showed that the affinity Kd value of CAIX was in the subnanomolar range, hundred to thousand-fold higher than those of other CA isozymes. Similar affinities were also observed for CAIX expressed on the cancer cell surface in live HeLa cell cultures, as determined by the competition assay. The NIR-fluorescent compounds showed excellent properties in visualizing CAIX-positive tumors but not CAIX-negative knockout tumors in a nude mice xenograft model. These compounds would therefore be helpful in optically guided cancer surgery and could potentially be developed for anticancer treatment by radiotherapy.


Subject(s)
Antigens, Neoplasm , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Fluorescent Dyes , Humans , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Animals , Fluorescent Dyes/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Mice , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/analysis , HeLa Cells , Neoplasms/diagnostic imaging , Mice, Nude , Sulfonamides/chemistry , Infrared Rays , Carbonic Anhydrases/metabolism , Optical Imaging/methods
2.
Sci Rep ; 12(1): 17644, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271018

ABSTRACT

Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Fluorescent Dyes , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Antigens, Neoplasm/metabolism , Sulfonamides/pharmacology , Fluoresceins
3.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36139781

ABSTRACT

Amyloid-ß and α-synuclein aggregation into amyloid fibrils is linked to the onset and progression of Alzheimer's and Parkinson's diseases. While there are only a few disease-modifying drugs, it is essential to search for new, more effective ways to encounter these neurodegenerative diseases. Multiple research articles have shown that the autoxidation of flavone is a critical factor for activating the inhibitory potential against the protein aggregation. Despite this, the structure of the newly-formed inhibitors is unknown. In this research, we examined the autoxidation products of 2',3'-dihydroxyflavone that were previously shown to possess one of the most prominent inhibitory effects against amyloid-ß aggregation. Their analysis using HPLC suggested the formation of polymeric molecules that were isolated using a 3 kDa cut-off. These polymeric structures were indicated as the most potent inhibitors based on protein aggregation kinetics and AFM studies. This revelation was confirmed using MALDI-TOF and NMR. We also show that active molecules have a tendency to reduce the Amyloid-ß and α-synuclein aggregates toxicity to SH-SY5Y cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...