Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499843

ABSTRACT

A new insight into capillary channel formation with a high aspect ratio in the translucent matter by nanosecond UV laser pulses is discussed based on our experiments on KrF laser multi-pulse drilling of polymethyl methacrylate and K8 silica glass. The proposed mechanism includes self-consistent laser beam filamentation along a small UV light penetration depth caused by a local refraction index increase due to material densification by both UV and ablation pressure, followed by filamentation-assisted ablation. A similar mechanism was shown to be realized in highly transparent media, i.e., KU-1 glass with a multiphoton absorption switched on instead of linear absorption. Waveguide laser beam propagation in long capillary channels was considered for direct electron acceleration by high-power laser pulses and nonlinear compression of excimer laser pulses into the picosecond range.

2.
Opt Lett ; 44(9): 2165-2168, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042174

ABSTRACT

At first glance, the amount of water molecules naturally contained in humid air is negligibly small to affect filamentation of ultrashort laser pulses. However, here we show, both experimentally and numerically, that for ultraviolet laser pulses with 248 nm wavelength this is not true. We demonstrate that with increase of air humidity the plasma channels generated by the ultraviolet laser pulses in air become longer and wider, while the corresponding electron density in humid air can be up to one order of magnitude higher compared to dry air.

3.
Appl Opt ; 53(31): I31-I40, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25402935

ABSTRACT

Experiments have been performed at hybrid Ti:sapphire/KrF laser facility GARPUN-MTW to develop a novel technique to create a hollow-core sliding-mode plasma-filament waveguide for directed transfer of microwave radiation. Efficient multiphoton air ionization was produced by a train of picosecond 1-TW UV pulses at 248 nm wavelength, or by amplitude-modulated 100 ns pulse combining a short-pulse train with a free-running 1-GW pulse, which detached electrons off O2- ions. Multiple filamentation of UV laser radiation in air was observed, and filamentation theory based on resonance-enhanced ionization was developed to explain the experimental results.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 2): 036404, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851166

ABSTRACT

Microscale optical breakdown induced in bulk pure water by high-power nanosecond KrF laser pulses was studied using optical transmission and contact broadband photoacoustic techniques. The breakdown has been identified as a sharp transmission drop coinciding with the appearance of unipolar compressive acoustic pulses, both indicating a thresholdlike rise of local intrinsic absorption in the micrometer-scale laser focal volume. The acoustic pulses, which are much broader than the exciting laser pulse and show a strongly reduced far-field diffraction effect, result from breakdown-induced millimeter-sized steam bubbles. The acoustic pulse amplitudes exhibit a sub-linear ( proportional, variantI(3/4)) pressure dependence on the laser intensity I characteristic of subcritical electron-ion plasma and demonstrating the avalanche enhancement of two-photon ionization above the breakdown threshold until the appearance of the critical plasma. In the critical plasma regime, where the transmission and the acoustic signals slowly vary as a function of laser intensity, the main acoustic pulse is preceded by nanosecond and sub- micros prepulses, where the first one represents a GPa-level plasma-driven shock wave and the second one adjacent to the main pulse appears due to weak submillimeter-long heating of water surrounding the hot plasma by its bremsstrahlung radiation, indicating significant dissociation of water molecules in the plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...