Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(4): e0231290, 2020.
Article in English | MEDLINE | ID: mdl-32275728

ABSTRACT

The L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS) is a nonribosomal peptide synthetase (NRPS) that fulfills a crucial role in the synthesis of ß-lactams. Although some of the enzymological aspects of this enzyme have been elucidated, its large size, at over 400 kDa, has hampered heterologous expression and stable purification attempts. Here we have successfully overexpressed the Nocardia lactamdurans ACVS in E. coli HM0079. The protein was purified to homogeneity and characterized for tripeptide formation with a focus on the substrate specificity of the three modules. The first L-α-aminoadipic acid-activating module is highly specific, whereas the modules for L-cysteine and L-valine are more promiscuous. Engineering of the first module of ACVS confirmed the strict specificity observed towards its substrate, which can be understood in terms of the non-canonical peptide bond position.


Subject(s)
Nocardia/enzymology , Peptide Synthases/metabolism , Amino Acid Sequence , Peptide Synthases/chemistry , Peptide Synthases/isolation & purification , Peptides/chemistry , Protein Domains , Protein Engineering , Substrate Specificity
2.
ACS Synth Biol ; 8(8): 1776-1787, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31284717

ABSTRACT

Filamentous fungi are known producers of bioactive natural products, low molecular weight molecules that arise from secondary metabolism. MbtH-like proteins (MLPs) are small (∼10 kDa) proteins, which associate noncovalently with adenylation domains of some bacterial nonribosomal peptide synthetases (NRPS). MLPs promote the folding, stability, and activity of NRPS enzymes. MLPs are highly conserved among a wide range of bacteria; however, they are absent from all fungal species sequenced to date. We analyzed the interaction potential of bacterial MLPs with eukaryotic NRPS enzymes first using crystal structures, with results suggesting a conservation of the interaction surface. Subsequently, we transformed five MLPs into Penicillium chrysogenum strains and analyzed changes in NRPS-derived metabolite profiles. Three of the five transformed MLPs increased the rate of nonribosomal peptide formation and elevated the concentrations of intermediate and final products of the penicillin, roquefortine, chrysogine, and fungisporin biosynthetic pathways. Our results suggest that even though MLPs are not found in the fungal domain of life, they can be used in fungal hosts as a tool for natural product discovery and biotechnological production.


Subject(s)
Fungi/enzymology , Fungi/metabolism , Peptide Synthases/metabolism , Fungi/genetics , Gene Dosage/genetics , Penicillium chrysogenum/enzymology , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , Peptide Synthases/chemistry , Peptide Synthases/genetics , Secondary Metabolism/genetics , Secondary Metabolism/physiology
3.
Front Microbiol ; 9: 2768, 2018.
Article in English | MEDLINE | ID: mdl-30524395

ABSTRACT

Penicillium chrysogenum (renamed P. rubens) is the most studied member of a family of more than 350 Penicillium species that constitute the genus. Since the discovery of penicillin by Alexander Fleming, this filamentous fungus is used as a commercial ß-lactam antibiotic producer. For several decades, P. chrysogenum was subjected to a classical strain improvement (CSI) program to increase penicillin titers. This resulted in a massive increase in the penicillin production capacity, paralleled by the silencing of several other biosynthetic gene clusters (BGCs), causing a reduction in the production of a broad range of BGC encoded natural products (NPs). Several approaches have been used to restore the ability of the penicillin production strains to synthetize the NPs lost during the CSI. Here, we summarize various re-activation mechanisms of BGCs, and how interference with regulation can be used as a strategy to activate or silence BGCs in filamentous fungi. To further emphasize the versatility of P. chrysogenum as a fungal production platform for NPs with potential commercial value, protein engineering of biosynthetic enzymes is discussed as a tool to develop de novo BGC pathways for new NPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...