Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 4(1): 513, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953329

ABSTRACT

The occurrence of natural root grafts, the union of roots of the same or different trees, is common and shared across tree species. However, their significance for forest ecology remains little understood. While early research suggested negative effects of root grafting with the risk of pathogen transmission, recent evidence supports the hypothesis that it is an adaptive strategy that reduces stress by facilitating resource exchange. Here, by analysing mangrove root graft networks in a non-destructive way at stand level, we show further evidence of cooperation-associated benefits of root grafting. Grafted trees were found to dominate the upper canopy of the forest, and as the probability of grafting and the frequency of grafted groups increased with a higher environmental stress, the mean number of trees within grafted groups decreased. While trees do not actively 'choose' neighbours to graft to, our findings point to the existence of underlying mechanisms that regulate 'optimal group size' selection related to resource use within cooperating networks. This work calls for further studies to better understand tree interactions (i.e. network hydraulic redistribution) and their consequences for individual tree and forest stand resilience.


Subject(s)
Plant Roots/growth & development , Rhizophoraceae/growth & development , Stress, Physiological , Trees/growth & development
2.
Comput Struct Biotechnol J ; 19: 586-599, 2021.
Article in English | MEDLINE | ID: mdl-33510864

ABSTRACT

Many antibiotic resistance genes are associated with plasmids. The ecological success of these mobile genetic elements within microbial communities depends on varying mechanisms to secure their own propagation, not only on environmental selection. Among the most important are the cost of plasmids and their ability to be transferred to new hosts through mechanisms such as conjugation. These are regulated by dynamic control systems of the conjugation machinery and genetic adaptations that plasmid-host pairs can acquire in coevolution. However, in complex communities, these processes and mechanisms are subject to a variety of interactions with other bacterial species and other plasmid types. This article summarizes basic plasmid properties and ecological principles particularly important for understanding the persistence of plasmid-coded antibiotic resistance in aquatic environments. Through selected examples, it further introduces to the features of different types of simulation models such as systems of ordinary differential equations and individual-based models, which are considered to be important tools to understand these complex systems. This ecological perspective aims to improve the way we study and understand the dynamics, diversity and persistence of plasmids and associated antibiotic resistance genes.

3.
mSystems ; 4(1)2019.
Article in English | MEDLINE | ID: mdl-30944871

ABSTRACT

The global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics. Whereas chromosomal mutations are inherited vertically through bacterial fission, plasmid mutations can be inherited both vertically and horizontally and potentially reduce the initial cost of the plasmid in new host cells. Here we show using mathematical models and simulations that the dynamics of plasmids depends critically on the genomic location of the compensatory mutation. We demonstrate that plasmid-located compensatory evolution is better at enhancing plasmid persistence, even when its effects are smaller than those provided by chromosomal compensation. Moreover, either type of compensatory evolution facilitates the survival of resistance plasmids at low drug concentrations. These insights contribute to an improved understanding of the conditions and mechanisms driving the spread and the evolution of antibiotic resistance plasmids. IMPORTANCE Understanding the evolutionary forces that maintain antibiotic resistance genes in a population, especially when antibiotics are not used, is an important problem for human health and society. The most common platform for the dissemination of antibiotic resistance genes is conjugative plasmids. Experimental studies showed that mutations located on the plasmid or the bacterial chromosome can reduce the costs plasmids impose on their hosts, resulting in antibiotic resistance plasmids being maintained even in the absence of antibiotics. While chromosomal mutations are only vertically inherited by the daughter cells, plasmid mutations are also provided to bacteria that acquire the plasmid through conjugation. Here we demonstrate how the mode of inheritance of a compensatory mutation crucially influences the ability of plasmids to spread and persist in a bacterial population.

SELECTION OF CITATIONS
SEARCH DETAIL