Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 77, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228637

ABSTRACT

Lake trophic state is a key ecosystem property that integrates a lake's physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible, robust methods across time and space. We used Landsat surface reflectance data to create the first compendium of annual lake trophic state for 55,662 lakes of at least 10 ha in area throughout the contiguous United States from 1984 through 2020. The dataset was constructed with FAIR data principles (Findable, Accessible, Interoperable, and Reproducible) in mind, where data are publicly available, relational keys from parent datasets are retained, and all data wrangling and modeling routines are scripted for future reuse. Together, this resource offers critical data to address basic and applied research questions about lake water quality at a suite of spatial and temporal scales.

2.
Proc Natl Acad Sci U S A ; 120(38): e2220283120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695904

ABSTRACT

Research in both ecology and AI strives for predictive understanding of complex systems, where nonlinearities arise from multidimensional interactions and feedbacks across multiple scales. After a century of independent, asynchronous advances in computational and ecological research, we foresee a critical need for intentional synergy to meet current societal challenges against the backdrop of global change. These challenges include understanding the unpredictability of systems-level phenomena and resilience dynamics on a rapidly changing planet. Here, we spotlight both the promise and the urgency of a convergence research paradigm between ecology and AI. Ecological systems are a challenge to fully and holistically model, even using the most prominent AI technique today: deep neural networks. Moreover, ecological systems have emergent and resilient behaviors that may inspire new, robust AI architectures and methodologies. We share examples of how challenges in ecological systems modeling would benefit from advances in AI techniques that are themselves inspired by the systems they seek to model. Both fields have inspired each other, albeit indirectly, in an evolution toward this convergence. We emphasize the need for more purposeful synergy to accelerate the understanding of ecological resilience whilst building the resilience currently lacking in modern AI systems, which have been shown to fail at times because of poor generalization in different contexts. Persistent epistemic barriers would benefit from attention in both disciplines. The implications of a successful convergence go beyond advancing ecological disciplines or achieving an artificial general intelligence-they are critical for both persisting and thriving in an uncertain future.


Subject(s)
Artificial Intelligence , Lepidoptera , Animals , Ecosystem , Generalization, Psychological , Neural Networks, Computer
3.
Ecol Appl ; 32(5): e2590, 2022 07.
Article in English | MEDLINE | ID: mdl-35343013

ABSTRACT

Near-term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state-space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin-producing cyanobacterium, Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near-term (1- to 4-week) forecasts of G. echinulata densities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4-week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1-week-ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long-term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems.


Subject(s)
Cyanobacteria , Lakes , Bayes Theorem , Ecosystem , Eutrophication , Uncertainty
4.
Glob Chang Biol ; 22(8): 2766-75, 2016 08.
Article in English | MEDLINE | ID: mdl-26919470

ABSTRACT

The observed pattern of lake browning, or increased terrestrial dissolved organic carbon (DOC) concentration, across the northern hemisphere has amplified the importance of understanding how consumer productivity varies with DOC concentration. Results from comparative studies suggest these increased DOC concentrations may reduce crustacean zooplankton productivity due to reductions in resource quality and volume of suitable habitat. Although these spatial comparisons provide an expectation for the response of zooplankton productivity as DOC concentration increases, we still have an incomplete understanding of how zooplankton respond to temporal increases in DOC concentration within a single system. As such, we used a whole-lake manipulation, in which DOC concentration was increased from 8 to 11 mg L(-1) in one basin of a manipulated lake, to test the hypothesis that crustacean zooplankton production should subsequently decrease. In contrast to the spatially derived expectation of sharp DOC-mediated decline, we observed a small increase in zooplankton densities in response to our experimental increase in DOC concentration of the treatment basin. This was due to significant increases in gross primary production and resource quality (lower seston carbon-to-phosphorus ratio; C:P). These results demonstrate that temporal changes in lake characteristics due to increased DOC may impact zooplankton in ways that differ from those observed in spatial surveys. We also identified significant interannual variability across our study region, which highlights potential difficulty in detecting temporal responses of organism abundances to gradual environmental change (e.g., browning).


Subject(s)
Carbon/analysis , Lakes , Zooplankton/growth & development , Animals , Carbon/metabolism , Crustacea , Ecosystem
5.
Ecol Appl ; 25(4): 943-55, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26465035

ABSTRACT

Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using regionalization schemes to guide water quality criteria could be improved by consideration of lake-specific characteristics, which were the most important predictors of water quality at the scale of the continental United States. The spatial extent and high quality of contextual data available for this analysis makes this work an unprecedented application of landscape limnology theory to water quality data. Further, the demonstrated importance of lake morphology over other controls on water quality is relevant to both aquatic scientists and managers.


Subject(s)
Lakes/chemistry , Water Pollutants, Chemical/chemistry , Water Quality , United States
6.
Ecology ; 96(8): 2257-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26405750

ABSTRACT

Predicting ecosystem function from environmental conditions is a central goal of ecosystem ecology. However, many traditional ecosystem models are tailored for specific regions or ecosystem types, requiring several regional models to predict the same function. Alternatively, trait-based approaches have been effectively used to predict community structure in both terrestrial and aquatic environments and ecosystem function in a limited number of terrestrial examples. Here, we test the efficacy of a trait-based model in predicting gross primary production (GPP) in lake ecosystems. We incorporated data from >1000 United States lakes along with laboratory-generated phytoplankton trait data to build a trait-based model of GPP and then validated the model with GPP observations from a separate set of globally distributed lakes. The trait-based model performed as well as or outperformed two ecosystem models both spatially and temporally, demonstrating the efficacy of trait-based models for predicting ecosystem function over a range of environmental conditions.


Subject(s)
Ecosystem , Lakes , Models, Biological , Phytoplankton/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...