Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4401, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928367

ABSTRACT

Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. CNPs have a wide range of applications due to their unique characteristics, including plant growth promotion and protection, drug delivery, antimicrobials, and encapsulation. The current study describes an alternative, biologically-based strategy for CNPs biosynthesis using Olea europaea leaves extract. Face centered central composite design (FCCCD), with 50 experiments was used for optimization of CNPs biosynthesis. The artificial neural network (ANN) was employed for analyzing, validating, and predicting CNPs biosynthesis using Olea europaea leaves extract. Using the desirability function, the optimum conditions for maximum CNPs biosynthesis were determined theoretically and verified experimentally. The highest experimental yield of CNPs (21.15 mg CNPs/mL) was obtained using chitosan solution of 1%, leaves extract solution of 100%, initial pH 4.47, and incubation time of 60 min at 53.83°C. The SEM and TEM images revealed that CNPs had a spherical form and varied in size between 6.91 and 11.14 nm. X-ray diffraction demonstrates the crystalline nature of CNPs. The surface of the CNPs is positively charged, having a Zeta potential of 33.1 mV. FTIR analysis revealed various functional groups including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The thermogravimetric investigation indicated that CNPs are thermally stable. The CNPs were able to suppress biofilm formation by P. aeruginosa, S. aureus and C. albicans at concentrations ranging from 10 to 1500 µg/mL in a dose-dependent manner. Inhibition of biofilm formation was associated with suppression of metabolic activity, protein/exopolysaccharide moieties, and hydrophobicity of biofilm encased cells (r ˃ 0.9, P = 0.00). Due to their small size, in the range of 6.91 to 11.14 nm, CNPs produced using Olea europaea leaves extract are promising for applications in the medical and pharmaceutical industries, in addition to their potential application in controlling multidrug-resistant microorganisms, especially those associated with post COVID-19 pneumonia in immunosuppressed patients.


Subject(s)
Anti-Infective Agents , COVID-19 , Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Artificial Intelligence , Staphylococcus aureus , Nanoparticles/chemistry , Anti-Infective Agents/pharmacology
2.
Sci Rep ; 12(1): 3515, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241695

ABSTRACT

Green synthesis is a newly emerging field of nanobiotechnology that offers economic and environmental advantages over traditional chemical and physical protocols. Nontoxic, eco-friendly, and biosafe materials are used to implement sustainable processes. The current work proposes a new biological-based strategy for the biosynthesis of chitosan nanoparticles (CNPs) using Pelargonium graveolens leaves extract. The bioconversion process of CNPs was maximized using the response surface methodology. The best combination of the tested parameters that maximized the biosynthesis process was the incubation of plant extract with 1.08% chitosan at 50.38 °C for 57.53 min., yielding 9.82 ± 3 mg CNPs/mL. Investigation of CNPs by SEM, TEM, EDXS, zeta potential, FTIR, XRD, TGA, and DSC proved the bioconversion process's success. Furthermore, the antifungal activity of the biosynthesized CNPs was screened against a severe isolate of the phytopathogenic Botrytis cinerea. CNPs exerted efficient activity against the fungal growth. On strawberry leaves, 25 mg CNPs/mL reduced the symptoms of gray mold severity down to 3%. The higher concentration of CNPs (50 mg/mL) was found to have a reverse effect on the infected area compared with those of lower concentrations (12.5 and 25 mg CNPs/mL). Therefore, additional work is encouraged to reduce the harmful side effects of elevated CNPs concentrations.


Subject(s)
Chitosan , Fragaria , Nanoparticles , Botrytis , Chitosan/toxicity , Fragaria/microbiology , Plant Leaves/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...