Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 194: 107178, 2023 08.
Article in English | MEDLINE | ID: mdl-37295319

ABSTRACT

Video/cortical electroencephalography (EEG) is monitored to assess progressive severity of generalized tonic clonic seizures (GTCSs) in a transgenic mouse model of adult-onset epilepsy with increased death risk. The mice overexpress the brain derived neurotrophic factor (BDNF) in the forebrain under the calcium/calmodulin dependent protein kinase 2a (termed TgBDNF) and develop GTCSs in response to tail suspension/cage agitation stimulation at 3-4 months of age. With successive GTCSs (a total of 16 across 10 weeks of assessment), seizures became more severe as evidenced by increased duration of postictal generalized EEG suppression (PGES) associated with loss of posture/consciousness. Mice also developed spike wave discharges with behavioral arrest during the seizure recovery that increased in duration as a function of number of GTCSs. Overall seizure duration (from preictal spike to offset of PGES) and ictal spectral power (full spectra) were also increased. Half of the TgBDNF mice expired following a long period of PGES at the last recorded GTCS. Seizure-evoked general arousal impairment was associated with a striking decrease in total number of gigantocellular neurons of the brainstem nucleus pontis oralis along with increase in volumes of the anterior cingulate cortex and dorsal dentate gyrus in severely convulsive TgBDNF mice compared to litter-matched WT controls and non-convulsive TgBDNF mice. The latter effect was accompanied with an increase in total number of hippocampal granule neurons. These results provide structure-function associations in an animal model of adult-onset GTCSs that progressively increase in severity with clinical relevance for sudden unexpected death following generalized seizures.


Subject(s)
Epilepsy, Generalized , Epilepsy, Tonic-Clonic , Epilepsy , Animals , Mice , Mice, Transgenic , Seizures , Epilepsy/complications , Electroencephalography/methods , Death, Sudden , Disease Models, Animal , Brain Stem
2.
Neuroscience ; 506: 38-50, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36273657

ABSTRACT

Cervical spinal cord injury (cSCI) impairs neural drive to the respiratory muscles, causing life- threatening complications such as respiratory insufficiency and diminished airway protection. Repetitive "low dose" acute intermittent hypoxia (AIH) is a promising strategy to restore motor function in people with chronic SCI. Conversely, "high dose" chronic intermittent hypoxia (CIH; ∼8 h/night), such as experienced during sleep apnea, causes pathology. Sleep apnea, spinal ischemia, hypoxia and neuroinflammation associated with cSCI increase extracellular adenosine concentrations and activate spinal adenosine receptors which in turn constrains the functional benefits of therapeutic AIH. Adenosine 1 and 2A receptors (A1, A2A) compete to determine net cAMP signaling and likely the tAIH efficacy with chronic cSCI. Since cSCI and intermittent hypoxia may regulate adenosine receptor expression in phrenic motor neurons, we tested the hypotheses that: 1) daily AIH (28 days) downregulates A2A and upregulates A1 receptor expression; 2) CIH (28 days) upregulates A2A and downregulates A1 receptor expression; and 3) cSCI alters the impact of CIH on adenosine receptor expression. Daily AIH had no effect on either adenosine receptor in intact or injured rats. However, CIH exerted complex effects depending on injury status. Whereas CIH increased A1 receptor expression in intact (not injured) rats, it increased A2A receptor expression in spinally injured (not intact) rats. The differential impact of CIH reinforces the concept that the injured spinal cord behaves in distinct ways from intact spinal cords, and that these differences should be considered in the design of experiments and/or new treatments for chronic cSCI.


Subject(s)
Sleep Apnea Syndromes , Spinal Cord Injuries , Rats , Animals , Motor Neurons , Receptors, Purinergic P1 , Hypoxia , Adenosine
3.
Exp Neurol ; 323: 113067, 2020 01.
Article in English | MEDLINE | ID: mdl-31629857

ABSTRACT

Respiratory motor neuron survival is critical for maintenance of adequate ventilation and airway clearance, preventing dependence to mechanical ventilation and respiratory tract infections. Phrenic motor neurons are highly vulnerable in rodent models of motor neuron disease versus accessory inspiratory motor pools (e.g. intercostals, scalenus). Thus, strategies that promote phrenic motor neuron survival when faced with disease and/or toxic insults are needed to help preserve breathing ability, airway defense and ventilator independence. Adenosine 2A receptors (A2A) are emerging as a potential target to promote neuroprotection, although their activation can have both beneficial and pathogenic effects. Since the role of A2A receptors in the phrenic motor neuron survival/death is not known, we tested the hypothesis that A2A receptor antagonism promotes phrenic motor neuron survival and preserves diaphragm function when faced with toxic, neurodegenerative insults that lead to phrenic motor neuron death. We utilized a novel neurotoxic model of respiratory motor neuron death recently developed in our laboratory: intrapleural injections of cholera toxin B subunit (CtB) conjugated to the ribosomal toxin, saporin (CtB-Saporin). We demonstrate that intrapleural CtB-Saporin causes: 1) profound phrenic motor neuron death (~5% survival); 2) ~7-fold increase in phrenic motor neuron A2A receptor expression prior to cell death; and 3) diaphragm muscle paralysis (inactive in most rats; ~7% residual diaphragm EMG amplitude during room air breathing). The A2A receptor antagonist istradefylline given after CtB-Saporin: 1) reduced phrenic motor neuron death (~20% survival) and 2) preserved diaphragm EMG activity (~46%). Thus, A2A receptors contribute to neurotoxic phrenic motor neuron death, an effect mitigated by A2A receptor antagonism.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Cholera Toxin/toxicity , Motor Neurons/drug effects , Motor Neurons/metabolism , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Saporins/toxicity , Animals , Apoptosis/drug effects , Diaphragm/innervation , Male , Purines/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...