Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Main subject
Publication year range
1.
Science ; 383(6683): 629-633, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38330124

ABSTRACT

Heat transport can serve as a fingerprint identifying different states of matter. In a normal liquid, a hotspot diffuses, whereas in a superfluid, heat propagates as a wave called "second sound." Direct imaging of heat transport is challenging, and one usually resorts to detecting secondary effects. In this study, we establish thermography of a strongly interacting atomic Fermi gas, whose radio-frequency spectrum provides spatially resolved thermometry with subnanokelvin resolution. The superfluid phase transition was directly observed as the sudden change from thermal diffusion to second-sound propagation and is accompanied by a peak in the second-sound diffusivity. This method yields the full heat and density response of the strongly interacting Fermi gas and therefore all defining properties of Landau's two-fluid hydrodynamics.

2.
Science ; 381(6653): 82-86, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37410819

ABSTRACT

The Hubbard model of attractively interacting fermions provides a paradigmatic setting for fermion pairing. It features a crossover between Bose-Einstein condensation of tightly bound pairs and Bardeen-Cooper-Schrieffer superfluidity of long-range Cooper pairs, and a "pseudo-gap" region where pairs form above the superfluid critical temperature. We directly observe the nonlocal nature of fermion pairing in a Hubbard lattice gas, using spin- and density-resolved imaging of [Formula: see text]1000 fermionic potassium-40 atoms under a bilayer microscope. Complete fermion pairing is revealed by the vanishing of global spin fluctuations with increasing attraction. In the strongly correlated regime, the fermion pair size is found to be on the order of the average interparticle spacing. Our study informs theories of pseudo-gap behavior in strongly correlated fermion systems.

3.
Science ; 375(6587): 1355-1356, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35324311

ABSTRACT

Light confined to a sheet offers a glimpse into low-dimensional quantum gases.


Subject(s)
Photons
4.
Nature ; 601(7891): 58-62, 2022 01.
Article in English | MEDLINE | ID: mdl-34987216

ABSTRACT

The dominance of interactions over kinetic energy lies at the heart of strongly correlated quantum matter, from fractional quantum Hall liquids1, to atoms in optical lattices2 and twisted bilayer graphene3. Crystalline phases often compete with correlated quantum liquids, and transitions between them occur when the energy cost of forming a density wave approaches zero. A prime example occurs for electrons in high-strength magnetic fields, where the instability of quantum Hall liquids towards a Wigner crystal4-9 is heralded by a roton-like softening of density modulations at the magnetic length7,10-12. Remarkably, interacting bosons in a gauge field are also expected to form analogous liquid and crystalline states13-21. However, combining interactions with strong synthetic magnetic fields has been a challenge for experiments on bosonic quantum gases18,21. Here we study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate22 in and near the lowest Landau level. We observe a spontaneous crystallization driven by condensation of magneto-rotons7,10, excitations visible as density modulations at the magnetic length. Increasing the cloud density smoothly connects this behaviour to a quantum version of the Kelvin-Helmholtz hydrodynamic instability, driven by the sheared internal flow profile of the rapidly rotating condensate. At long times the condensate self-organizes into a persistent array of droplets separated by vortex streets, which are stabilized by a balance of interactions and effective magnetic forces.

5.
Nature ; 601(7894): 537-541, 2022 01.
Article in English | MEDLINE | ID: mdl-35082420

ABSTRACT

Quantum control of motion is central for modern atomic clocks1 and interferometers2. It enables protocols to process and distribute quantum information3,4, and allows the probing of entanglement in correlated states of matter5. However, the motional coherence of individual particles can be fragile to maintain, as external degrees of freedom couple strongly to the environment. Systems in nature with robust motional coherence instead often involve pairs of particles, from the electrons in helium, to atom pairs6, molecules7 and Cooper pairs. Here we demonstrate long-lived motional coherence and entanglement of pairs of fermionic atoms in an optical lattice array. The common and relative motion of each pair realize a robust qubit, protected by exchange symmetry. The energy difference between the two motional states is set by the atomic recoil energy, is dependent on only the mass and the lattice wavelength, and is insensitive to the noise of the confining potential. We observe quantum coherence beyond ten seconds. Modulation of the interactions between the atoms provides universal control of the motional qubit. The methods presented here will enable coherently programmable quantum simulators of many-fermion systems8, precision metrology based on atom pairs and molecules9,10 and, by implementing further advances11-13, digital quantum computation using fermion pairs14.

6.
Science ; 372(6548): 1318-1322, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34140384

ABSTRACT

The equivalence between particles under rotation and charged particles in a magnetic field relates phenomena as diverse as spinning atomic nuclei, weather patterns, and the quantum Hall effect. For such systems, quantum mechanics dictates that translations along different directions do not commute, implying a Heisenberg uncertainty relation between spatial coordinates. We implement squeezing of this geometric quantum uncertainty, resulting in a rotating Bose-Einstein condensate occupying a single Landau gauge wave function. We resolve the extent of zero-point cyclotron orbits and demonstrate geometric squeezing of the orbits' centers 7 decibels below the standard quantum limit. The condensate attains an angular momentum exceeding 1000 quanta per particle and an interatomic distance comparable to the cyclotron orbit. This offers an alternative route toward strongly correlated bosonic fluids.

7.
Science ; 370(6521): 1222-1226, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33273102

ABSTRACT

Transport of strongly interacting fermions is crucial for the properties of modern materials, nuclear fission, the merging of neutron stars, and the expansion of the early Universe. Here, we observe a universal quantum limit of diffusivity in a homogeneous, strongly interacting atomic Fermi gas by studying sound propagation and its attenuation through the coupled transport of momentum and heat. In the normal state, the sound diffusivity D monotonically decreases upon lowering the temperature, in contrast to the diverging behavior of weakly interacting Fermi liquids. Below the superfluid transition temperature, D attains a universal value set by the ratio of Planck's constant and the particle mass. Our findings inform theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons, and quarks.

8.
Phys Rev Lett ; 125(11): 113601, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32975995

ABSTRACT

We report on the single atom and single site-resolved detection of the total density in a cold atom realization of the 2D Fermi-Hubbard model. Fluorescence imaging of doublons is achieved by splitting each lattice site into a double well, thereby separating atom pairs. Full density readout yields a direct measurement of the equation of state, including direct thermometry via the fluctuation-dissipation theorem. Site-resolved density correlations reveal the Pauli hole at low filling, and strong doublon-hole correlations near half filling. These are shown to account for the difference between local and nonlocal density fluctuations in the Mott insulator. Our technique enables the study of atom-resolved charge transport in the Fermi-Hubbard model, the site-resolved observation of molecules, and the creation of bilayer Fermi-Hubbard systems.

9.
Phys Rev Lett ; 125(6): 063401, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845680

ABSTRACT

We demonstrate microwave dressing on ultracold, fermionic ^{23}Na^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding 3 times the s-wave unitarity limit. The origin of these interactions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channel calculations that agree well with the experimentally observed collision rates. The resonant microwave-induced collisions found here enable controlled, strong interactions between molecules, of immediate use for experiments in optical lattices.

10.
Science ; 368(6487): 190-194, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32273469

ABSTRACT

The emergence of quasiparticles in interacting matter represents one of the cornerstones of modern physics. However, in the vicinity of a quantum critical point, the existence of quasiparticles comes under question. Here, we created Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using radiofrequency spectroscopy, we probed the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities formed well-defined quasiparticles. Their inverse lifetime, given by their spectral width, increased linearly with temperature at the so-called Planckian scale, consistent with quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeded the impurity's binding energy, signaling a breakdown of the quasiparticle picture.

11.
Phys Rev Lett ; 123(12): 123402, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633957

ABSTRACT

The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses.

12.
Phys Rev Lett ; 122(20): 203402, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172778

ABSTRACT

We measure radio frequency (rf) spectra of the homogeneous unitary Fermi gas at temperatures ranging from the Boltzmann regime through quantum degeneracy and across the superfluid transition. For all temperatures, a single spectral peak is observed. Its position smoothly evolves from the bare atomic resonance in the Boltzmann regime to a frequency corresponding to nearly one Fermi energy at the lowest temperatures. At high temperatures, the peak width reflects the scattering rate of the atoms, while at low temperatures, the width is set by the size of fermion pairs. Above the superfluid transition, and approaching the quantum critical regime, the width increases linearly with temperature, indicating non-Fermi-liquid behavior. From the wings of the rf spectra, we obtain the contact, quantifying the strength of short-range pair correlations. We find that the contact rapidly increases as the gas is cooled below the superfluid transition.

13.
Phys Rev Lett ; 122(9): 093401, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30932518

ABSTRACT

We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range correlations of Fermi polarons at low temperatures T. In this regime, we observe a characteristic T^{2} dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid. At high T, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann gas, ∝T^{-1/2}. In the transition region between the quantum degenerate and classical regime, the spectral width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a harmonic trap directly reveal the majority dressing cloud surrounding the minority spins and yield the compressibility along with the effective mass of Fermi polarons.

14.
Science ; 363(6425): 383-387, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30523079

ABSTRACT

Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.

15.
Phys Chem Chem Phys ; 20(7): 4739-4745, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29379932

ABSTRACT

We employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential (a3Σ+) of the 23Na6Li molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet molecular state, which in turn is coupled to vibrational states of the triplet ground potential. Vibrational state binding energies, line strengths, and potential fitting parameters for the triplet ground a3Σ+ potential are reported. We also observe rotational splitting in the lowest vibrational state.

16.
Phys Chem Chem Phys ; 20(7): 4746-4751, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29380828

ABSTRACT

We perform photoassociation spectroscopy in an ultracold 23Na-6Li mixture to study the c3Σ+ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line strength data from photoassociation loss measurements. An analysis of the vibrational line positions using near-dissociation expansions and a full potential fit is presented. This is the first observation of the c3Σ+ potential, as well as photoassociation in the NaLi system.

17.
Phys Rev Lett ; 119(14): 143001, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053331

ABSTRACT

We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

18.
Science ; 357(6349): 372-375, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28751602

ABSTRACT

Coherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state. Ramsey spectroscopy reveals coherence times on the scale of 1 second; this enables high-resolution spectroscopy of the molecular gas. Collisional shifts are shown to be absent down to the 100-millihertz level. This work opens the door to the use of molecules as a versatile quantum memory and for precision measurements on dipolar quantum matter.

19.
Phys Rev Lett ; 118(12): 123401, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28388181

ABSTRACT

We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

20.
Science ; 355(6323): 377-380, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28126813

ABSTRACT

In many-body systems governed by pairwise contact interactions, a wide range of observables is linked by a single parameter, the two-body contact, which quantifies two-particle correlations. This profound insight has transformed our understanding of strongly interacting Fermi gases. Using Ramsey interferometry, we studied coherent evolution of the resonantly interacting Bose gas, and we show here that it cannot be explained by only pairwise correlations. Our experiments reveal the crucial role of three-body correlations arising from Efimov physics and provide a direct measurement of the associated three-body contact.

SELECTION OF CITATIONS
SEARCH DETAIL
...