Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 11(5): 729-38, 2000 Mar 20.
Article in English | MEDLINE | ID: mdl-10757352

ABSTRACT

The potential of using bone marrow (BM)-derived human stromal cells for ex vivo gene therapy of hemophilia A was evaluated. BM stromal cells were transduced with an intron-based Moloney murine leukemia virus (Mo-MuLV) retroviral vector that contained the B domain-deleted human factor VIII (FVIIIdeltaB) cDNA. This FVIII-retroviral vector was pseudotyped with the gibbon ape leukemia virus envelope (GALV-env) to attain higher transduction efficiencies. Using optimized transduction methods, high in vitro FVIII expression levels of 700 to 2500 mU of FVIII/10(6) cells per 24 hr were achieved without selective enrichment of the transduced BM stromal cells. After xenografting of 1.5-3 x 106 engineered BM stromal cells into the spleen of nonobese diabetic severe combined immunodeficient (NOD-SCID) mice, human plasma FVIII levels rose to 13 +/- 4 ng/ml but declined to basal levels by 3 weeks postinjection because of promoter inactivation. About 10% of these stromal cells engrafted in the spleen and persisted for at least 4 months after transplantation in the absence of myeloablative conditioning. No human BM stromal cells could be detected in other organs. These findings indicate that retroviral vector-mediated gene therapy using engineered BM stromal cells may lead to therapeutic levels of FVIII in vivo and that long-term engraftment of human BM stromal cells was achieved in the absence of myeloablative conditioning and without neo-organs. Hence, BM stromal cells may be useful for gene therapy of hemophilia A, provided prolonged expression can be achieved by using alternative promoters.


Subject(s)
Bone Marrow Cells/physiology , Factor VIII/genetics , Factor VIII/metabolism , Retroviridae/genetics , Stromal Cells/physiology , Animals , Bone Marrow Cells/virology , Bone Marrow Transplantation , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stromal Cells/virology
2.
Proc Natl Acad Sci U S A ; 96(18): 10379-84, 1999 Aug 31.
Article in English | MEDLINE | ID: mdl-10468616

ABSTRACT

Hemophilia A is caused by a deficiency in coagulation factor VIII (FVIII) and predisposes to spontaneous bleeding that can be life-threatening or lead to chronic disabilities. It is well suited for gene therapy because a moderate increase in plasma FVIII concentration has therapeutic effects. Improved retroviral vectors expressing high levels of human FVIII were pseudotyped with the vesicular stomatitis virus G glycoprotein, were concentrated to high-titers (10(9)-10(10) colony-forming units/ml), and were injected intravenously into newborn, FVIII-deficient mice. High-levels (>/=200 milliunits/ml) of functional human FVIII production could be detected in 6 of the 13 animals, 4 of which expressed physiologic or higher levels (500-12,500 milliunits/ml). Five of the six expressers produced FVIII and survived an otherwise lethal tail-clipping, demonstrating phenotypic correction of the bleeding disorder. FVIII expression was sustained for >14 months. Gene transfer occurred into liver, spleen, and lungs with predominant FVIII mRNA expression in the liver. Six of the seven animals with transient or no detectable human FVIII developed FVIII inhibitors (7-350 Bethesda units/ml). These findings indicate that a genetic disease can be corrected by in vivo gene therapy using retroviral vectors.


Subject(s)
Factor VIII/genetics , Genetic Therapy , Hemophilia A/therapy , Membrane Glycoproteins , Animals , Factor VIII/biosynthesis , Gene Transfer Techniques , Hemophilia A/genetics , Humans , Mice , Mice, Knockout , Organ Specificity , Phenotype , Polymerase Chain Reaction , RNA, Messenger/genetics , Retroviridae , Time Factors , Transcription, Genetic , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...