Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: mdl-35746766

ABSTRACT

In the present work we studied the antiviral activity of the home library of monoterpenoid derivatives using the pseudoviral systems of our development, which have glycoproteins of the SARS-CoV-2 virus strains Wuhan and Delta on their surface. We found that borneol derivatives with a tertiary nitrogen atom can exhibit activity at the early stages of viral replication. In order to search for potential binding sites of ligands with glycoprotein, we carried out additional biological tests to study the inhibition of the re-receptor-binding domain of protein S. For the compounds that showed activity on the pseudoviral system, a study using three strains of the infectious SARS-CoV-2 virus was carried out. As a result, two leader compounds were found that showed activity on the Wuhan, Delta, and Omicron strains. Based on the biological results, we searched for the potential binding site of the leader compounds using molecular dynamics and molecular docking methods. We suggested that the compounds can bind in conserved regions of the central helices and/or heptad repeats of glycoprotein S of SARS-CoV-2 viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Camphanes , Esters , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/metabolism
2.
Viruses ; 14(1)2022 01 10.
Article in English | MEDLINE | ID: mdl-35062323

ABSTRACT

In this work, we evaluated the antiviral activity of Arbidol (Umifenovir) against SARS-CoV-2 using a pseudoviral system with the glycoprotein S of the SARS-CoV-2 virus on its surface. In order to search for binding sites to protein S of the virus, we described alternative binding sites of Arbidol in RBD and in the ACE-2-RBD complex. As a result of our molecular dynamics simulations combined with molecular docking data, we note the following fact: wherever the molecules of Arbidol bind, the interaction of the latter affects the structural flexibility of the protein. This interaction may result both in a change in the shape of the domain-enzyme binding interface and simply in a change in the structural flexibility of the domain, which can subsequently affect its affinity to the enzyme. In addition, we examined the possibility of Arbidol binding in the stem part of the surface protein. The possibility of Arbidol binding in different parts of the protein is not excluded. This may explain the antiviral activity of Arbidol. Our results could be useful for researchers searching for effective SARS-CoV-2 virus inhibitors targeting the viral entry stage.


Subject(s)
Antiviral Agents/chemistry , Indoles/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Sulfides/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Binding Sites , Cell Survival/drug effects , HEK293 Cells , Humans , Indoles/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Sulfides/pharmacology , Virus Internalization/drug effects
3.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924393

ABSTRACT

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.


Subject(s)
Antiviral Agents/chemical synthesis , Bicyclic Monoterpenes/chemistry , Antiviral Agents/chemistry , Ebolavirus/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Orthomyxoviridae/drug effects , Protein Structure, Secondary , Pyrrolidines/chemistry
4.
Eur J Med Chem ; 207: 112726, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32905862

ABSTRACT

In this study, we screened a large library of (+)-camphor and (-)-borneol derivatives to assess their filovirus entry inhibition activities using pseudotype systems. Structure-activity relationship studies revealed several compounds exhibiting submicromolar IC50 values. These compounds were evaluated for their effect against natural Ebola virus (EBOV) and Marburg virus. Compound 3b (As-358) exhibited the good antiviral potency (IC50 = 3.7 µM, SI = 118) against Marburg virus, while the hydrochloride salt of this compound 3b·HCl had a strong inhibitory effect against Ebola virus (IC50 = 9.1 µM, SI = 31) and good in vivo safety (LD50 > 1000 mg/kg). The results of molecular docking and in vitro mutagenesis analyses suggest that the synthesized compounds bind to the active binding site of EBOV glycoprotein similar to the known inhibitor toremifene.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Monoterpenes/chemistry , Monoterpenes/pharmacology , Animals , Antiviral Agents/toxicity , Ebolavirus/physiology , HEK293 Cells , Hemorrhagic Fever, Ebola/drug therapy , Humans , Marburg Virus Disease/drug therapy , Marburgvirus/physiology , Mice, Inbred ICR , Molecular Docking Simulation , Monoterpenes/toxicity , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...