Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 12995, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844478

ABSTRACT

Woodsmoke (WS) exposure is associated with significant health-related sequelae. Different populations can potentially exhibit varying susceptibility, based on endocrine phenotypes, to WS and investigating neurological impacts following inhaled WS is a growing area of research. In this study, a whole-body inhalation chamber was used to expose both male and female C57BL/6 mice (n = 8 per group) to either control filtered air (FA) or acute WS (0.861 ± 0.210 mg/m3) for 4 h/d for 2 days. Neuroinflammatory and lipid-based biological markers were then assessed. In a second set of studies, female mice were divided into two groups: one group was ovariectomized (OVX) to simulate an ovarian hormone-deficient state (surgical menopause), and the other underwent Sham surgery as controls, to mechanistically assess the impact of ovarian hormone presence on neuroinflammation following FA and acute WS exposure to simulate an acute wildfire episode. There was a statistically significant impact of sex (P ≤ 0.05) and statistically significant interactions between sex and treatment in IL-1ß, CXCL-1, TGF-ß, and IL-6 brain relative gene expression. Hippocampal and cortex genes also exhibited significant changes in acute WS-exposed Sham and OVX mice, particularly in TGF-ß (hippocampus) and CCL-2 and CXCL-1 (cortex). Cortex GFAP optical density (OD) showed a notable elevation in male mice exposed to acute WS, compared to the control FA. Sham and OVX females demonstrated differential GFAP expression, depending on brain region. Overall, targeted lipidomics in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serum and brain lipids demonstrated more significant changes between control FA and acute WS exposure in female mice, compared to males. In summary, male and female mice show distinct neuroinflammatory markers in response to acute WS exposure. Furthermore, ovarian hormone deficiency may impact the neuroinflammatory response following an acute WS event.


Subject(s)
Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Female , Male , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Sex Factors , Ovariectomy/adverse effects , Brain/metabolism , Ovary/metabolism
2.
Part Fibre Toxicol ; 21(1): 27, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38797836

ABSTRACT

BACKGROUND: Rural regions of the western United States have experienced a noticeable surge in both the frequency and severity of acute wildfire events, which brings significant challenges to both public safety and environmental conservation efforts, with impacts felt globally. Identifying factors contributing to immune dysfunction, including endocrinological phenotypes, is essential to understanding how hormones may influence toxicological susceptibility. METHODS: This exploratory study utilized male and female C57BL/6 mice as in vivo models to investigate distinct responses to acute woodsmoke (WS) exposure with a focus on sex-based differences. In a second set of investigations, two groups were established within the female mouse cohort. In one group, mice experienced ovariectomy (OVX) to simulate an ovarian hormone-deficient state similar to surgical menopause, while the other group received Sham surgery as controls, to investigate the mechanistic role of ovarian hormone presence in driving immune dysregulation following acute WS exposure. Each experimental cohort followed a consecutive 2-day protocol with daily 4-h exposure intervals under two conditions: control HEPA-filtered air (FA) and acute WS to simulate an acute wildfire episode. RESULTS: Metals analysis of WS particulate matter (PM) revealed significantly increased levels of 63Cu, 182W, 208Pb, and 238U, compared to filtered air (FA) controls, providing insights into the specific metal components most impacted by the changing dynamics of wildfire occurrences in the region. Male and female mice exhibited diverse patterns in lung mRNA cytokine expression following WS exposure, with males showing downregulation and females displaying upregulation, notably for IL-1ß, TNF-α, CXCL-1, CCL-5, TGF-ß, and IL-6. After acute WS exposure, there were notable differences in the responses of macrophages, neutrophils, and bronchoalveolar lavage (BAL) cytokines IL-10, IL-6, IL-1ß, and TNF-α. Significant diverse alterations were observed in BAL cytokines, specifically IL-1ß, IL-10, IL-6, and TNF-α, as well as in the populations of immune cells, such as macrophages and polymorphonuclear leukocytes, in both Sham and OVX mice, following acute WS exposure. These findings elucidated the profound influence of hormonal changes on inflammatory outcomes, delineating substantial sex-related differences in immune activation and revealing altered immune responses in OVX mice due to ovarian hormone deficiency. In addition, the flow cytometry analysis highlighted the complex interaction between OVX surgery, acute WS exposure, and their collective impact on immune cell populations within the hematopoietic bone marrow niche. CONCLUSIONS: In summary, both male and female mice, alongside females subjected to OVX and those who had sham surgery, exhibit significant variations in the expression of proinflammatory cytokines, chemokines, lung mRNA gene expression, and related functional networks linked to signaling pathways. These differences potentially act as mediators of sex-specific and hormonal influences in the systemic inflammatory response to acute WS exposure during a wildfire event. Understanding the regulatory roles of genes expressed differentially under environmental stressors holds considerable implications, aiding in identifying sex-specific therapeutic targets for addressing acute lung inflammation and injury.


Subject(s)
Inhalation Exposure , Mice, Inbred C57BL , Animals , Female , Male , Inhalation Exposure/adverse effects , Wildfires , Particulate Matter/toxicity , Sex Factors , Cytokines/metabolism , Cytokines/immunology , Lung/immunology , Lung/drug effects , Lung/metabolism , Smoke/adverse effects , Air Pollutants/toxicity , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Ovariectomy , Mice , Ovary/immunology , Ovary/drug effects , Ovary/metabolism
3.
J Transl Autoimmun ; 6: 100197, 2023.
Article in English | MEDLINE | ID: mdl-36942097

ABSTRACT

Introduction: The Southwestern United States (SWUS) has an extensive history of coal and metal mining, including uranium (U) mining. Lung diseases, including but not limited to, lung cancer and pulmonary fibrosis, have been studied extensively in miners due to occupational, dust-related exposures. However, high-throughput autoimmune biomarkers are largely understudied in miners, despite the fact that ore miners, such as U-miners, are at an increased risk for the development of autoimmune diseases such as systemic sclerosis and systemic lupus erythematosus (SLE). Additionally, there are current gaps in knowledge regarding which signaling pathways may play a role in occupational exposure-associated autoimmunity. Methods: Most current and former miners in the SWUS live close to their previous workplaces, in remote areas, with limited access to healthcare. In this pilot study, by leveraging a mobile clinical platform for patient care and clinical outreach, we recruited 44 miners who self-identified as either U (n = 10) or non-U miners (n = 34) and received health screenings. Serum IgG and IgM autoantibodies against 128 antigens were assessed using a high-throughput molecular technique, as a preliminary health screening opportunity. Results: Even when adjusting for age as a covariate, there was a significant (p < 0.05) association between self-reported U-mining exposure and biomarkers including IgM alpha-actinin, histones H2B, and H4, myeloperoxidase (MPO) and myelin basic protein. However, adjusting for age did not result in significant associations for IgG autoantibody production in U-miners. Bioinformatic pathway analysis revealed several altered signaling pathways between IgM and IgG autoantibodies among both U and non-U miners. Conclusions: Further research is warranted regarding the mechanistic connection between U-exposure and autoantibody development, especially regarding histone-related alterations and IgM autoantibody production.

4.
Inhal Toxicol ; 35(3-4): 86-100, 2023.
Article in English | MEDLINE | ID: mdl-35037817

ABSTRACT

OBJECTIVE: Environmental exposures exacerbate age-related pathologies, such as cardiovascular and neurodegenerative diseases. Nanoparticulates, and specifically carbon nanomaterials, are a fast-growing contributor to the category of inhalable pollutants, whose risks to health are only now being unraveled. The current study assessed the exacerbating effect of age on multiwalled-carbon nanotube (MWCNT) exposure in young and old C57BL/6 and ApoE-/- mice. MATERIALS AND METHODS: Female C57BL/6 and apolipoprotein E-deficient (ApoE-/-) mice, aged 8 weeks and 15 months, were exposed to 0 or 40 µg MWCNT via oropharyngeal aspiration. Pulmonary inflammation, inflammatory bioactivity of serum, and neurometabolic changes were assessed at 24 h post-exposure. RESULTS: Pulmonary neutrophil infiltration was induced by MWCNT in bronchoalveolar lavage fluid in both C57BL/6 and ApoE-/-. Macrophage counts decreased with MWCNT exposure in ApoE-/- mice but were unaffected by exposure in C57BL/6 mice. Older mice appeared to have greater MWCNT-induced total protein in lavage fluid. BALF cytokines and chemokines were elevated with MWCNT exposure, but CCL2, CXCL1, and CXCL10 showed reduced responses to MWCNT in older mice. However, no significant serum inflammatory bioactivity was detected. Cerebellar metabolic changes in response to MWCNT were modest, but age and strain significantly influenced metabolite profiles assessed. ApoE-/- mice and older mice exhibited less robust metabolite changes in response to exposure, suggesting a reduced health reserve. CONCLUSIONS: Age influences the pulmonary and neurological responses to short-term MWCNT exposure. However, with only the model of moderate aging (15 months) in this study, the responses appeared modest compared to inhaled toxicant impacts in more advanced aging models.


Subject(s)
Nanotubes, Carbon , Female , Animals , Mice , Nanotubes, Carbon/toxicity , Mice, Inbred C57BL , Lung , Bronchoalveolar Lavage Fluid , Inflammation/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/pharmacology , Apolipoproteins/metabolism , Apolipoproteins/pharmacology , Inhalation Exposure/adverse effects
5.
Toxics ; 10(8)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36006136

ABSTRACT

Particulate matter (PM) exposure is a global health issue that impacts both urban and rural communities. Residential communities in the Southwestern United States have expressed concerns regarding the health impacts of fugitive PM from rural, legacy mine-sites. In addition, the recent literature suggests that exosomes may play a role in driving toxicological phenotypes following inhaled exposures. In this study, we assessed exosome-driven mechanisms and systemic health impacts following inhaled dust exposure, using a rodent model. Using an exosome inhibitor, GW4869 (10 µM), we inhibited exosome generation in the lungs of mice via oropharyngeal aspiration. We then exposed mice to previously characterized inhaled particulate matter (PM) from a legacy mine-site and subsequently assessed downstream behavioral, cellular, and molecular biomarkers in lung, serum, and brain tissue. Results indicated that CCL-2 was significantly upregulated in the lung tissue and downregulated in the brain (p < 0.05) following PM exposure. Additional experiments revealed cerebrovascular barrier integrity deficits and increased glial fibrillary acidic protein (GFAP) staining in the mine-PM exposure group, mechanistically dependent on exosome inhibition. An increased stress and anxiety response, based on the open-field test, was noted in the mine-PM exposure group, and subsequently mitigated with GW4869 intervention. Exosome lipidomics revealed 240 and eight significantly altered positive-ion lipids and negative-ion lipids, respectively, across the three treatment groups. Generally, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids were significantly downregulated in the PM group, compared to FA. In conclusion, these data suggest that systemic, toxic impacts of inhaled PM may be mechanistically dependent on lung-derived, circulating exosomes, thereby driving a systemic, proinflammatory phenotype.

6.
Life (Basel) ; 11(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833099

ABSTRACT

The United States has a rich history of mining including uranium (U)-mining, coal mining, and other metal mining. Cardiovascular diseases (CVD) are largely understudied in miners and recent literature suggests that when compared to non-U miners, U-miners are more likely to report CVD. However, the molecular basis for this phenomenon is currently unknown. In this pilot study, a New Mexico (NM)-based occupational cohort of current and former miners (n = 44) were recruited via a mobile screening clinic for miners. Serum- and endothelial-based endpoints were used to assess circulating inflammatory potential relevant to CVD. Non-U miners reported significantly fewer pack years of smoking than U-miners. Circulating biomarkers of interest revealed that U-miners had significantly greater serum amyloid A (SAA), soluble intercellular adhesion molecule 1 (ICAM-1, ng/mL), soluble vascular cell adhesion molecule 1 (VCAM-1, ng/mL), and VCAM-1 mRNA expression, as determined by the serum cumulative inflammatory potential (SCIP) assay, an endothelial-based assay. Even after adjusting for various covariates, including age, multivariable analysis determined that U-miners had significantly upregulated VCAM-1 mRNA. In conclusion, VCAM-1 may be an important biomarker and possible contributor of CVD in U-miners. Further research to explore this mechanism may be warranted.

7.
Part Fibre Toxicol ; 18(1): 34, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34496918

ABSTRACT

BACKGROUND: Multiwalled carbon nanotubes (MWCNT) are an increasingly utilized engineered nanomaterial that pose the potential for significant risk of exposure-related health outcomes. The mechanism(s) underlying MWCNT-induced toxicity to extrapulmonary sites are still being defined. MWCNT-induced serum-borne bioactivity appears to dysregulate systemic endothelial cell function. The serum compositional changes after MWCNT exposure have been identified as a surge of fragmented endogenous peptides, likely derived from matrix metalloproteinase (MMP) activity. In the present study, we utilize a broad-spectrum MMP inhibitor, Marimastat, along with a previously described oropharyngeal aspiration model of MWCNT administration to investigate the role of MMPs in MWCNT-derived serum peptide generation and endothelial bioactivity. RESULTS: C57BL/6 mice were treated with Marimastat or vehicle by oropharyngeal aspiration 1 h prior to MWCNT treatment. Pulmonary neutrophil infiltration and total bronchoalveolar lavage fluid protein increased independent of MMP blockade. The lung cytokine profile similarly increased following MWCNT exposure for major inflammatory markers (IL-1ß, IL-6, and TNF-α), with minimal impact from MMP inhibition. However, serum peptidomic analysis revealed differential peptide compositional profiles, with MMP blockade abrogating MWCNT-derived serum peptide fragments. The serum, in turn, exhibited differential potency in terms of inflammatory bioactivity when incubated with primary murine cerebrovascular endothelial cells. Serum from MWCNT-treated mice led to inflammatory responses in endothelial cells that were significantly blunted with serum from Marimastat-treated mice. CONCLUSIONS: Thus, MWCNT exposure induced pulmonary inflammation that was largely independent of MMP activity but generated circulating bioactive peptides through predominantly MMP-dependent pathways. This MWCNT-induced lung-derived bioactivity caused pathological consequences of endothelial inflammation and barrier disruption.


Subject(s)
Nanotubes, Carbon , Pneumonia , Animals , Bronchoalveolar Lavage Fluid , Endothelial Cells , Hydroxamic Acids , Lung , Matrix Metalloproteinase Inhibitors/toxicity , Mice , Mice, Inbred C57BL , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced
8.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34235927

ABSTRACT

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Subject(s)
Uranium , Carbon , Coal , Dust/analysis , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Uranium/analysis , Uranium/toxicity
9.
J Toxicol Environ Health A ; 84(12): 503-517, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33682625

ABSTRACT

The Southwestern United States has a legacy of industrial mining due to the presence of rich mineral ore deposits. The relationship between environmental inhaled particulate matter (PM) exposures and neurological outcomes within an autoimmune context is understudied. The aim of this study was to compare two regionally-relevant dusts from high-priority abandoned mine-sites, Claim 28 PM, from Blue Gap Tachee, AZ and St. Anthony mine PM, from the Pueblo of Laguna, NM and to expose autoimmune-prone mice (NZBWF1/J). Mice were randomly assigned to one of three groups (n = 8/group): DM (dispersion media, control), Claim 28 PM, or St. Anthony PM, subjected to oropharyngeal aspiration of (100 µg/50 µl), once per week for a total of 4 consecutive doses. A battery of immunological and neurological endpoints was assessed at 24 weeks of age including: bronchoalveolar lavage cell counts, lung gene expression, brain immunohistochemistry, behavioral tasks and serum autoimmune biomarkers. Bronchoalveolar lavage results demonstrated a significant increase in number of polymorphonuclear neutrophils following Claim 28 and St. Anthony mine PM aspiration. Lung mRNA expression showed significant upregulation in CCL-2 and IL-1ß following St. Anthony mine PM aspiration. In addition, neuroinflammation was present in both Claim 28 and St. Anthony mine-site derived PM exposure groups. Behavioral tasks resulted in significant deficits as determined by Y-maze new arm frequency following Claim 28 aspiration. Neutrophil elastase was significantly upregulated in the St. Anthony mine exposure group. Interestingly, there were no significant changes in serum autoantigens suggesting systemic inflammatory effects may be mediated through other molecular mechanisms following low-dose PM exposures.


Subject(s)
Air Pollutants/toxicity , Dust/analysis , Encephalitis/physiopathology , Learning/drug effects , Memory/drug effects , Particulate Matter/toxicity , Pneumonia/physiopathology , Animals , Arizona , Autoimmune Diseases/etiology , Biomarkers/metabolism , Disease Models, Animal , Dust/immunology , Encephalitis/chemically induced , Female , Inhalation Exposure/adverse effects , Mice , Mining , New Mexico , Particle Size , Pneumonia/chemically induced , Random Allocation
10.
J Toxicol Environ Health A ; 84(1): 31-48, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33050837

ABSTRACT

Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/adverse effects , Mining , Particulate Matter/toxicity , Uranium , Animals , Female , Male , Mice , Mice, Inbred C57BL , Toxicity Tests, Acute , Toxicity Tests, Subchronic
11.
Toxicol Sci ; 179(1): 121-134, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33146391

ABSTRACT

Exposure to air pollutants such as ozone (O3) is associated with adverse pregnancy outcomes, including higher incidence of gestational hypertension, preeclampsia, and peripartum cardiomyopathy; however, the underlying mechanisms of this association remain unclear. We hypothesized that O3 exposures during early placental formation would lead to more adverse cardiovascular effects at term for exposed dams, as compared with late-term exposures. Pregnant Sprague Dawley rats were exposed (4 h) to either filtered air (FA) or O3 (0.3 or 1.0 ppm) at either gestational day (GD)10 or GD20, with longitudinal functional assessments and molecular endpoints conducted at term. Exposure at GD10 led to placental transcriptional changes at term that were consistent with markers in human preeclampsia, including reduced mmp10 and increased cd36, fzd1, and col1a1. O3 exposure, at both early and late gestation, induced a significant increase in maternal circulating soluble FMS-like tyrosine kinase-1 (sFlt-1), a known driver of preeclampsia. Otherwise, exposure to 0.3 ppm O3 at GD10 led to several late-stage cardiovascular outcomes in dams that were not evident in GD20-exposed dams, including elevated uterine artery resistance index and reduced cardiac output and stroke volume. GD10 O3 exposure proteomic profile in maternal hearts characterized by a reduction in proteins with essential roles in metabolism and mitochondrial function, whereas phosphoproteomic changes were consistent with pathways involved in cardiomyopathic responses. Thus, the developing placenta is an indirect target of inhaled O3 and systemic maternal cardiovascular abnormalities may be induced by O3 exposure at a specific window of gestation.


Subject(s)
Ozone , Uterine Artery , Animals , Female , Humans , Ozone/toxicity , Placenta , Pregnancy , Proteomics , Rats , Rats, Sprague-Dawley
12.
Part Fibre Toxicol ; 17(1): 29, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32611356

ABSTRACT

BACKGROUND: Commercial uranium mining on the Navajo Nation has subjected communities on tribal lands in the Southwestern United States to exposures from residual environmental contamination. Vascular health effects from these ongoing exposures are an active area of study. There is an association between residential mine-site proximity and circulating biomarkers in residents, however, the contribution of mine-site derived wind-blown dusts on vascular and other health outcomes is unknown. To assess neurovascular effects of mine-site derived dusts, we exposed mice using a novel exposure paradigm, the AirCARE1 mobile inhalation laboratory, located 2 km from an abandoned uranium mine, Claim 28 in Blue Gap Tachee, AZ. Mice were exposed to filtered air (FA) (n = 6) or concentrated ambient particulate matter (CAPs) (n = 5) for 2 wks for 4 h per day. RESULTS: To assess miRNA differential expression in cultured mouse cerebrovascular cells following particulate matter (PM) exposure (average: 96.6 ± 60.4 µg/m3 for all 4 h exposures), the serum cumulative inflammatory potential (SCIP) assay was employed. MiRNA sequencing was then performed in cultured mouse cerebrovascular endothelial cells (mCECs) to evaluate transcriptional changes. Results indicated 27 highly differentially expressed (p < 0.01) murine miRNAs, as measured in the SCIP assay. Gene ontology (GO) pathway analysis revealed notable alterations in GO enrichment related to the cytoplasm, protein binding and the cytosol, while significant KEGG pathways involved pathways in cancer, axon guidance and Wnt signaling. Expression of these 27 identified, differentially expressed murine miRNAs were then evaluated in the serum. Nine of these miRNAs (~ 30%) were significantly altered in the serum and 8 of those miRNAs demonstrated the same directional change (either upregulation or downregulation) as cellular miRNAs, as measured in the SCIP assay. Significantly upregulated miRNAs in the CAPs exposure group included miRNAs in the let-7a family. Overexpression of mmu-let-7a via transfection experiments, suggested that this miRNA may mediate mCEC barrier integrity following dust exposure. CONCLUSIONS: Our data suggest that mCEC miRNAs as measured in the SCIP assay show similarity to serum-borne miRNAs, as approximately 30% of highly differentially expressed cellular miRNAs in the SCIP assay were also found in the serum. While translocation of miRNAs via exosomes or an alternative mechanism is certainly possible, other yet-to-be-identified factors in the serum may be responsible for significant miRNA differential expression in endothelium following inhaled exposures. Additionally, the most highly upregulated murine miRNAs in the CAPs exposure group were in the let-7a family. These miRNAs play a prominent role in cell growth and differentiation and based on our transfection experiments, mmu-let-7a may contribute to cerebrovascular mCEC alterations following inhaled dust exposure.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Animals , Biomarkers/blood , Cell Differentiation , Cell Proliferation , Endothelium , Inhalation Exposure , Mice , MicroRNAs , Southwestern United States , Uranium
13.
Cardiovasc Toxicol ; 20(3): 211-221, 2020 06.
Article in English | MEDLINE | ID: mdl-31410643

ABSTRACT

Roadside proximity and exposure to mixed vehicular emissions (MVE) have been linked to adverse pulmonary and vascular outcomes. However, because of the complex nature of the contribution of particulate matter (PM) versus gases, it is difficult to decipher the precise causative factors regarding PM and the copollutant gaseous fraction. To this end, C57BL/6 and apolipoprotein E knockout mice (ApoE-/-) were exposed to either filtered air (FA), fine particulate (FP), FP+gases (FP+G), ultrafine particulate (UFP), or UFP+gases (UFP+G). Two different timeframes were employed: 1-day (acute) or 30-day (subchronic) exposures. Examined biological endpoints included aortic vasoreactivity, aortic lesion quantification, and aortic mRNA expression. Impairments in vasorelaxation were observed following acute exposure to FP+G in C57BL/6 animals and FP, UFP, and UFP+G in ApoE-/- animals. These effects were completely abrogated or markedly reduced following subchronic exposure. Aortic lesion quantification in ApoE-/- animals indicated a significant increase in atheroma size in the UFP-, FP-, and FP+G-exposed groups. Additionally, ApoE-/- mice demonstrated a significant fold increase in TNFα expression following FP+G exposure and ET-1 following UFP exposure. Interestingly, C57BL/6 aortic gene expression varied widely across exposure groups. TNFα decreased significantly following FP exposure and CCL-5 decreased in the UFP-, FP-, and FP+G-exposed groups. Conversely, ET-1, CCL-2, and CXCL-1 were all significantly upregulated in the FP+G group. These findings suggest that gas-particle interactions may play a role in vascular toxicity, but the contribution of surface area is not clear.


Subject(s)
Aorta/drug effects , Aortic Diseases/chemically induced , Atherosclerosis/chemically induced , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Animals , Aorta/metabolism , Aorta/pathology , Aorta/physiopathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Aortic Diseases/physiopathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Disease Models, Animal , Endothelin-1/genetics , Endothelin-1/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Risk Assessment , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vasodilation/drug effects
14.
Cardiovasc Toxicol ; 19(5): 401-411, 2019 10.
Article in English | MEDLINE | ID: mdl-30963444

ABSTRACT

Ambient particulate matter (PM) is associated with increased mortality and morbidity, an effect influenced by the metal components of the PM. We characterized five sediment samples obtained near a tungsten-molybdenum ore-processing complex in Zakamensk, Russia for elemental composition and PM toxicity with regard to pulmonary, vascular, and neurological outcomes. Elemental and trace metals analysis of complete sediment and PM10 (the respirable fraction, < 10 µm mass mean aerodynamic diameter) were performed using inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS). Sediment samples and PM10 consisted largely of silicon and iron and silicon and sodium, respectively. Trace metals including manganese and uranium in the complete sediment, as well as copper and lead in the PM10 were observed. Notably, metal concentrations were approximately 10 × higher in the PM10 than in the sediment. Exposure to 100 µg of PM10 via oropharyngeal aspiration in C56BL/6 mice resulted in pulmonary inflammation across all groups. In addition, mice exposed to three of the five PM10 samples exhibited impaired endothelial-dependent relaxation, and correlative analysis revealed associations between pulmonary inflammation and levels of lead and cadmium. A tendency for elevated cortical ccl2 and Tnf-α mRNA expression was induced by all samples and significant upregulation was noted following exposure to PM10 samples Z3 and Z4, respectively. Cortical Nqo1 mRNA levels were significantly upregulated in mice exposed to PM10 Z2. In conclusion, pulmonary exposure to PM samples from the Zakamensk region sediments induced varied pulmonary and systemic effects that may be influenced by elemental PM composition. Further investigation is needed to pinpoint putative drivers of neurological outcomes.


Subject(s)
Air Pollutants/toxicity , Aorta, Thoracic/drug effects , Cadmium/toxicity , Cerebral Cortex/drug effects , Dust , Lead/toxicity , Mining , Particulate Matter/toxicity , Pneumonia/chemically induced , Animals , Aorta, Thoracic/physiopathology , Cerebral Cortex/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Inhalation Exposure , Male , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress/drug effects , Particle Size , Pneumonia/genetics , Pneumonia/metabolism , Risk Assessment , Siberia , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vasodilation/drug effects
15.
Curr Environ Health Rep ; 5(4): 486-498, 2018 12.
Article in English | MEDLINE | ID: mdl-30298344

ABSTRACT

PURPOSE OF REVIEW: The incidence of pulmonary fibrosis is increasing worldwide and may, in part, be due to occupational and environmental exposures. Secondary fibrotic interstitial lung diseases may be mistaken for idiopathic pulmonary fibrosis with important implications for both disease management and prognosis. The purposes of this review are to shed light on possible underlying causes of interstitial pulmonary fibrosis and to encourage dialogue on the importance of acquiring a thorough patient history of occupational and environmental exposures. RECENT FINDINGS: A recent appreciation for various occupational and environmental metals inducing both antigen-specific immune reactions in the lung and nonspecific "innate" immune system responses has emerged and with it a growing awareness of the potential hazards to the lung caused by low-level metal exposures. Advancements in the contrast and quality of high-resolution CT scans and identification of histopathological patterns of interstitial pulmonary fibrosis have improved clinical diagnostics. Moreover, recent findings indicate specific hotspots of pulmonary fibrosis within the USA. Increased prevalence of lung disease in these areas appears to be linked to occupational/environmental metal exposure and ethnic susceptibility/vulnerability. A systematic overview of possible occupational and environmental metals causing interstitial pulmonary fibrosis and a detailed evaluation of vulnerable/susceptible populations may facilitate a broader understanding of potential underlying causes and highlight risks of disease predisposition.


Subject(s)
Environmental Exposure/adverse effects , Idiopathic Pulmonary Fibrosis/chemically induced , Metals/adverse effects , Occupational Exposure/adverse effects , Humans , Incidence
16.
Toxicol Sci ; 164(1): 101-114, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29660078

ABSTRACT

Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared with background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤ 10 µm) fraction. Mice were dosed with either PM sample, uranyl acetate, or vanadyl sulfate via aspiration (100 µg), with assessments of pulmonary and vascular toxicity 24 h later. Particulate matter samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared with background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated interleukin [IL]-1ß, tumor necrosis factor-α, and keratinocyte chemoattractant/human growth-regulated oncogene) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, and IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.


Subject(s)
Heart/drug effects , Inhalation Exposure/adverse effects , Lung/drug effects , Nanoparticles/toxicity , Particulate Matter/toxicity , Uranium/toxicity , Vanadium Compounds/toxicity , Animals , Bronchoalveolar Lavage Fluid/immunology , Cell Survival/drug effects , Cytokines/analysis , Geologic Sediments/chemistry , Humans , Lung/immunology , Male , Mice, Inbred C57BL , Mining , Nanoparticles/analysis , Oxidative Stress/drug effects , Particle Size , Particulate Matter/analysis , THP-1 Cells , Uranium/analysis , Vanadium Compounds/analysis , Vasodilation/drug effects
17.
Proc Natl Acad Sci U S A ; 114(10): E1968-E1976, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223486

ABSTRACT

Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Blood-Brain Barrier/drug effects , Drug Carriers/adverse effects , Encephalitis/prevention & control , Nanotubes, Carbon/adverse effects , Protein Kinase Inhibitors/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Administration, Inhalation , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/metabolism , Brain/pathology , CD36 Antigens/deficiency , CD36 Antigens/genetics , Cell Movement/drug effects , Encephalitis/chemically induced , Encephalitis/genetics , Encephalitis/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fluorescein/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , rho-Associated Kinases/genetics
18.
J Expo Sci Environ Epidemiol ; 27(4): 365-371, 2017 07.
Article in English | MEDLINE | ID: mdl-28120833

ABSTRACT

Members of the Navajo Nation, who possess a high prevalence of cardiometabolic disease, reside near hundreds of local abandoned uranium mines (AUM), which contribute uranium, arsenic and other metals to the soil, water and air. We recently reported that hypertension is associated with mine waste exposures in this population. Inflammation is a major player in the development of numerous vascular ailments. Our previous work establishing that specific transcriptional responses of cultured endothelial cells treated with human serum can reveal relative circulating inflammatory potential in a manner responsive to pollutant exposures, providing a model to assess responses associated with exposure to these waste materials in this population. To investigate a potential link between exposures to AUM and serum inflammatory potential in affected communities, primary human coronary artery endothelial cells were treated for 4 h with serum provided by Navajo study participants (n=145). Endothelial transcriptional responses of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and chemokine ligand 2 (CCL2) were measured. These transcriptional responses were then linked to AUM exposure metrics, including surface area-weighted AUM proximity and estimated oral intake of metals. AUM proximity strongly predicted endothelial transcriptional responses to serum including CCL2, VCAM-1 and ICAM-1 (P<0.0001 for each), whereas annual water intakes of arsenic and uranium did not, even after controlling for all major effect modifiers. Inflammatory potential associated with proximity to AUMs, but not oral intake of specific metals, additionally suggests a role for inhalation exposure as a contributor to cardiovascular disease.


Subject(s)
Chemokine CCL2/metabolism , Intercellular Adhesion Molecule-1/metabolism , Uranium/adverse effects , Vascular Cell Adhesion Molecule-1/metabolism , Adult , Aged , Arsenic/adverse effects , Arsenic/analysis , Biological Assay , Chemokine CCL2/blood , Coronary Vessels , Drinking Water , Endothelial Cells/metabolism , Female , Geographic Information Systems , Humans , Indians, North American , Inhalation Exposure , Intercellular Adhesion Molecule-1/blood , Interviews as Topic , Male , Middle Aged , Mining , Regression Analysis , Uranium/analysis , Vascular Cell Adhesion Molecule-1/blood
19.
Part Fibre Toxicol ; 13(1): 64, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27906023

ABSTRACT

BACKGROUND: Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE-/-) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. RESULTS: The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE-/- animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE-/- mice including Il-1ß, IL-6, Tgf-ß and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1ß, and Tnf-α. Interestingly, Il-6 and Tgf-ß expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-ß in the ApoE-/- hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. CONCLUSIONS: Inflammatory responses the lung and brain were most substantial in ApoE-/- animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity.


Subject(s)
Inflammation/chemically induced , Lung/drug effects , Vehicle Emissions/toxicity , Animals , Apolipoproteins E/genetics , Body Weight , Bronchoalveolar Lavage Fluid , Cytokines/biosynthesis , Inhalation Exposure , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Surface Properties
20.
Atherosclerosis ; 254: 59-66, 2016 11.
Article in English | MEDLINE | ID: mdl-27693879

ABSTRACT

BACKGROUND AND AIMS: Obstructive sleep apnea (OSA) is characterized by intermittent airway obstruction and systemic hypoxia during sleep, which can contribute to an increase in reactive oxygen species, vascular remodeling, vasoconstriction and ultimately cardiovascular disease. Continuous positive airway pressure (CPAP) is a clinical therapy that maintains airway patency and mitigates several symptoms of OSA. However, it is currently unknown whether CPAP therapy also reduces the overall inflammatory potential in the circulation; to address this in an unbiased manner, we applied a novel endothelial biosensor approach, the serum cumulative inflammatory potential (SCIP) assay. METHODS: We studied healthy controls (n = 7), OSA subjects receiving no treatment, (OSA controls) (n = 7) and OSA subjects receiving CPAP for 3 months (n = 8). Serum was obtained from OSA subjects before and after CPAP or no treatment. A battery of quantitative and functional assays was performed to assess the serum inflammatory potential, in terms of endothelial responses. For the SCIP assay, human coronary artery endothelial cells (hCAECs) were incubated with 5% serum in media from individual subjects for 4 h. qPCR was performed to assess endothelial inflammatory transcript (ICAM-1, VCAM-1, IL-8, P-selectin, CCL5, and CXCL12) responses to serum. Additionally, transendothelial resistance was measured in serum-incubated hCAECs following leukocyte challenge. RESULTS: hCAECs exhibited significant increases in VCAM-1, ICAM-1, IL-8 and P-selectin mRNA when incubated with serum from OSA patients compared to serum from healthy control subjects. Furthermore, compared to no treatment, serum from CPAP-treated individuals was less potent at inducing inflammatory gene expression in the SCIP assay. Similarly, in a leukocyte adhesion assay, naïve cells treated with serum from patients who received CPAP exhibited improved endothelial barrier function than cells treated with OSA control serum. CONCLUSIONS: OSA results in greater serum inflammatory potential, thereby driving endothelial activation and dysfunction.


Subject(s)
Continuous Positive Airway Pressure/methods , Coronary Vessels/pathology , Endothelial Cells/cytology , Inflammation/blood , Sleep Apnea, Obstructive/blood , Adult , Biosensing Techniques , Case-Control Studies , Cell Adhesion , Cohort Studies , Humans , Hypoxia/blood , Hypoxia/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/metabolism , Leukocytes/cytology , Leukocytes/metabolism , Male , Middle Aged , P-Selectin/metabolism , Risk Factors , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL