Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(1): 360-374, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36512803

ABSTRACT

Killer whales (Orcinus orca) have been deemed one of the most contaminated cetacean species in the world. However, concentrations and potential health implications of selected 'contaminants of emerging concern' (CECs) and new persistent organic pollutants (POPs) in endangered Southern Resident and threatened Bigg's (Transient) killer whales in the Northeastern Pacific (NEP) have not yet been documented. Here, we quantify CECs [alkylphenols (APs), triclosan, methyl triclosan, and per- and polyfluoroalkyl substances (PFAS)] and new POPs [hexabromocyclododecane (HBCCD), PFOS, PFOA, and PFHxS] in skeletal muscle and liver samples of these sentinel species and investigate in utero transfer of these contaminants. Samples were collected from necropsied individuals from 2006 to 2018 and analyzed by LC-MS/MS or HRBC/HRMS. AP and PFAS contaminants were the most prevalent compounds; 4-nonylphenol (4NP) was the predominant AP (median 40.84 ng/g ww), and interestingly, 7:3-fluorotelomer carboxylic acid (7:3 FTCA) was the primary PFAS (median 66.35 ng/g ww). Maternal transfer ratios indicated 4NP as the most transferred contaminant from the dam to the fetus, with maternal transfer rates as high as 95.1%. Although too few killer whales have been screened for CECs and new POPs to infer the magnitude of contamination impact, these results raise concerns regarding pathological implications and potential impacts on fetal development and production of a viable neonate. This study outlines CEC and new POP concentrations in killer whales of the NEP and provides scientifically derived evidence to support and inform regulation to mitigate pollutant sources and contamination of Southern Resident killer whale critical habitat and other marine ecosystems.


Subject(s)
Environmental Pollutants , Fluorocarbons , Whale, Killer , Animals , Environmental Monitoring/methods , Ecosystem , Chromatography, Liquid , Tandem Mass Spectrometry
2.
Elife ; 52016 07 30.
Article in English | MEDLINE | ID: mdl-27474796

ABSTRACT

The mechanisms that underlie directional cell migration are incompletely understood. Eph receptors usually guide migrations of cells by exclusion from regions expressing Ephrin. In sea urchin embryos, pigmented immunocytes are specified in vegetal epithelium, transition to mesenchyme, migrate, and re-enter ectoderm, distributing in dorsal ectoderm and ciliary band, but not ventral ectoderm. Immunocytes express Sp-Eph and Sp-Efn is expressed throughout dorsal and ciliary band ectoderm. Interfering with expression or function of Sp-Eph results in rounded immunocytes entering ectoderm but not adopting a dendritic form. Expressing Sp-Efn throughout embryos permits immunocyte insertion in ventral ectoderm. In mosaic embryos, immunocytes insert preferentially in ectoderm expressing Sp-Efn. We conclude that Sp-Eph signaling is necessary and sufficient for epithelial insertion. As well, we propose that immunocytes disperse when Sp-Eph enhances adhesion, causing haptotactic movement to regions of higher ligand abundance. This is a distinctive example of Eph/Ephrin signaling acting positively to pattern migrating cells.


Subject(s)
Cell Movement , Ephrins/metabolism , Epithelium/embryology , Receptor, EphA1/metabolism , Sea Urchins/embryology , Animals
3.
Development ; 143(2): 286-97, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26511925

ABSTRACT

A single origin to the diverse mechanisms of metazoan neurogenesis is suggested by the involvement of common signaling components and similar classes of transcription factors. However, in many forms we lack details of where neurons arise, patterns of cell division, and specific differentiation pathway components. The sea urchin larval nervous system is composed of an apical organ, which develops from neuroepithelium and functions as a central nervous system, and peripheral neurons, which differentiate in the ciliary band and project axons to the apical organ. To reveal developmental mechanisms of neurogenesis in this basal deuterostome, we developed antibodies to SoxC, SoxB2, ELAV and Brn1/2/4 and used neurons that develop at specific locations to establish a timeline for neurogenesis. Neural progenitors express, in turn, SoxB2, SoxC, and Brn1/2/4, before projecting neurites and expressing ELAV and SynB. Using pulse-chase labeling of cells with a thymidine analog to identify cells in S-phase, we establish that neurons identified by location are in their last mitotic cycle at the time of hatching, and S-phase is coincident with expression of SoxC. The number of cells expressing SoxC and differentiating as neurons is reduced in embryos injected with antisense morpholino oligonucleotides to SoxC, SoxB2 or Six3. Injection of RNA encoding SoxC into eggs does not enhance neurogenesis. In addition, inhibition of FGF receptors (SU5402) or a morpholino to FGFR1 reduces expression of SoxC. These data indicate that there are common features of neurogenesis in deuterostomes, and that sea urchins employ developmental mechanisms that are distinct from other ambulacraria.


Subject(s)
Embryo, Nonmammalian/cytology , Larva/cytology , Neurogenesis/physiology , Sea Urchins/cytology , Animals , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Larva/metabolism , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Sea Urchins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...