Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Exp Med Biol ; 812: 355-360, 2014.
Article in English | MEDLINE | ID: mdl-24729254

ABSTRACT

We recently introduced a novel textile-based NIRS sensor (TexNIRS). Here, we evaluate TexNIRS in ten subjects (16 legs, age 28.5 ± 2.32 years, adipose tissue thickness (ATT) 4.17 ± 1.71 mm). Three venous occlusions at 50 mmHg were performed on their calf muscle. After 3 min of occlusion, oxy/deoxy hemoglobin concentration ([O2Hb], [HHb]) changes were 3.71 ± 1.89/1.79 ± 1.08 µM; venous oxygen saturation (SvO2) was 75 ± 9.7 %, oxygen consumption (VO2) was 0.02 ± 0.01 mL/100 g/min, hemoglobin flow (HF) was 0.93 ± 0.48 µmol/100 mL/min, and blood flow (BF) was 2.01 ± 1.04 mL/100 mL/min. Our results are in good agreement with the literature, but the TexNIRS enables a much higher level of comfort.


Subject(s)
Muscle, Skeletal/metabolism , Oxygen/metabolism , Spectroscopy, Near-Infrared/methods , Textiles , Adolescent , Adult , Aged , Humans , Middle Aged , Oxyhemoglobins/metabolism , Young Adult
2.
Nat Commun ; 5: 2982, 2014.
Article in English | MEDLINE | ID: mdl-24399363

ABSTRACT

Electronics on very thin substrates have shown remarkable bendability, conformability and lightness, which are important attributes for biological tissues sensing, wearable or implantable devices. Here we propose a wafer-scale process scheme to realize ultra flexible, lightweight and transparent electronics on top of a 1-µm thick parylene film that is released from the carrier substrate after the dissolution in water of a polyvinyl- alcohol layer. The thin substrate ensures extreme flexibility, which is demonstrated by transistors that continue to work when wrapped around human hairs. In parallel, the use of amorphous oxide semiconductor and high-K dielectric enables the realization of analogue amplifiers operating at 12 V and above 1 MHz. Electronics can be transferred on any object, surface and on biological tissues like human skin and plant leaves. We foresee a potential application as smart contact lenses, covered with light, transparent and flexible devices, which could serve to monitor intraocular pressure for glaucoma disease.


Subject(s)
Electronics, Medical , Equipment Design , Pliability , Semiconductors , Silicon , Transistors, Electronic
3.
Article in English | MEDLINE | ID: mdl-25570912

ABSTRACT

Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.


Subject(s)
Electronics/instrumentation , Plastics , Textiles , Clothing , Equipment Design , Gallium/chemistry , Hand , Heart Rate , Humans , Indium/chemistry , Oxides/chemistry , Semiconductors , Telemedicine/instrumentation , Zinc/chemistry
4.
ACS Nano ; 7(10): 8809-15, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-23991756

ABSTRACT

Recently, transition metal dichalcogenides (TMDCs) have attracted interest thanks to their large field effective mobility (>100 cm(2)/V · s), sizable band gap (around 1-2 eV), and mechanical properties, which make them suitable for high performance and flexible electronics. In this paper, we present a process scheme enabling the fabrication and transfer of few-layers MoS2 thin film transistors from a silicon template to any arbitrary organic or inorganic and flexible or rigid substrate or support. The two-dimensional semiconductor is mechanically exfoliated from a bulk crystal on a silicon/polyvinyl alcohol (PVA)/polymethyl methacrylane (PMMA) stack optimized to ensure high contrast for the identification of subnanometer thick flakes. Thin film transistors (TFTs) with structured source/drain and gate electrodes are fabricated following a designed procedure including steps of UV lithography, wet etching, and atomic layer deposited (ALD) dielectric. Successively, after the dissolution of the PVA sacrificial layer in water, the PMMA film, with the devices on top, can be transferred to another substrate of choice. Here, we transferred the devices on a polyimide plastic foil and studied the performance when tensile strain is applied parallel to the TFT channel. We measured an electron field effective mobility of 19 cm(2)/(V s), an I(on)/I(off)ratio greater than 10(6), a gate leakage current as low as 0.3 pA/µm, and a subthreshold swing of about 250 mV/dec. The devices continue to work when bent to a radius of 5 mm and after 10 consecutive bending cycles. The proposed fabrication strategy can be extended to any kind of 2D materials and enable the realization of electronic circuits and optical devices easily transferrable to any other support.

5.
Opt Express ; 21(3): 3213-24, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481780

ABSTRACT

Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 µm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices.


Subject(s)
Lighting/instrumentation , Monitoring, Ambulatory/instrumentation , Oximetry/instrumentation , Oxygen/blood , Semiconductors , Spectroscopy, Near-Infrared/instrumentation , Textiles , Equipment Design , Equipment Failure Analysis , Humans , Systems Integration , Transducers
6.
Sensors (Basel) ; 12(10): 13681-93, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23202016

ABSTRACT

The fabrication of electronic devices, such as gas sensors on flexible polymer substrates, enables the use of electronics in applications where conventional devices on stiff substrates could not be used. We demonstrate the development of a new intra-tube electronic-nose (e-nose) gas sensor device with multiple sensors fabricated and integrated on a flexible substrate. For this purpose, we developed a new method of fabricating a sensor array of four gas sensors on a flexible polymer substrate. The method allowed the use of lithography techniques to pattern different polymers with a broad range of solubility parameters. Conductive polymer composites were used as a gas sensitive layer due to the high stretchability of the material. Each of the 30 e-nose devices on one substrate was designed to fit on a polymer strip with a width of 2 mm. A single e-nose strip was successfully integrated into the inlet tube of a gas-measurement apparatus with an inner-tube diameter of 3 mm. Using the e-nose, we were able to differentiate between four different volatile solvent vapors. The tube-integrated e-nose outperformed a chamber-integrated e-nose of the same type in terms of response time and flow-rate influences. The sensor array inside the tube showed a faster response time and detected short pulses of analyte exposure compared to the same sensor array outside of the tube. We measured gas flow rates from 1,000 to 30 sccm without significant changes in sensor performance using this intra-tube e-nose prototype. The tube could be bent to radii < 15 mm with a sensor performance similar to an unbent sensor.


Subject(s)
Biosensing Techniques/instrumentation , Electronic Nose , Polymers/chemistry , Biosensing Techniques/standards , Calibration , Electronic Nose/standards , Equipment Design , Gases/analysis , Microtechnology , Pliability , Solvents/analysis
SELECTION OF CITATIONS
SEARCH DETAIL