Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biomolecules ; 13(10)2023 10 13.
Article in English | MEDLINE | ID: mdl-37892203

ABSTRACT

One of the most common forms of genetic deafness has been predominantly associated with pathogenic variants in the GJB2 gene, encoding transmembrane protein connexin 26 (Cx26). The Cx26 molecule consists of an N-terminal domain (NT), four transmembrane domains (TM1-TM4), two extracellular loops (EL1 and EL2), a cytoplasmic loop, and a C-terminus (CT). Pathogenic variants in the GJB2 gene, resulting in amino acid substitutions scattered across the Cx26 domains, lead to a variety of clinical outcomes, including the most common non-syndromic autosomal recessive deafness (DFNB1A), autosomal dominant deafness (DFNA3A), as well as syndromic forms combining hearing loss and skin disorders. However, for rare and poorly documented variants, information on the mode of inheritance is often lacking. Numerous in vitro studies have been conducted to elucidate the functional consequences of pathogenic GJB2 variants leading to amino acid substitutions in different domains of Cx26 protein. In this work, we summarized all available data on a mode of inheritance of pathogenic GJB2 variants leading to amino acid substitutions and reviewed published information on their functional effects, with an emphasis on their localization in certain Cx26 domains.


Subject(s)
Connexin 26 , Hearing Loss , Humans , Connexin 26/genetics , Connexins/genetics , Deafness/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation
2.
Genes (Basel) ; 14(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37107686

ABSTRACT

Pathogenic variants in the SLC26A4 gene leading to nonsyndromic recessive deafness (DFNB4), or Pendred syndrome, are some of the most common causes of hearing loss worldwide. Earlier, we found a high proportion of SLC26A4-related hearing loss with prevailing pathogenic variant c.919-2A>G (69.3% among all mutated SLC26A4 alleles that have been identified) in Tuvinian patients belonging to the indigenous Turkic-speaking Siberian people living in the Tyva Republic (Southern Siberia, Russia), which implies a founder effect in the accumulation of c.919-2A>G in Tuvinians. To evaluate a possible common origin of c.919-2A>G, we genotyped polymorphic STR and SNP markers, intragenic and flanking SLC26A4, in patients homozygous for c.919-2A>G and in healthy controls. The common STR and SNP haplotypes carrying c.919-2A>G were revealed, which convincingly indicates the origin of c.919-2A>G from a single ancestor, supporting a crucial role of the founder effect in the c.919-2A>G prevalence in Tuvinians. Comparison analysis with previously published data revealed the identity of the small SNP haplotype (~4.5 kb) in Tuvinian and Han Chinese carriers of c.919-2A>G, which suggests their common origin from founder chromosomes. We assume that c.919-2A>G could have originated in the geographically close territories of China or Tuva and subsequently spread to other regions of Asia. In addition, the time intervals of the c.919-2A>G occurrence in Tuvinians were roughly estimated.


Subject(s)
Deafness , Hearing Loss , Humans , Siberia/epidemiology , Mutation , Hearing Loss/genetics , Deafness/genetics , Russia , Sulfate Transporters/genetics
3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362242

ABSTRACT

Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13−17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Humans , Sulfate Transporters/genetics , Mutation , Hearing Loss/diagnosis , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Deafness/genetics
4.
Diagnostics (Basel) ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34943614

ABSTRACT

Hereditary hearing loss (HL) is known to be highly locus/allelic heterogeneous, and the prevalence of different HL forms significantly varies among populations worldwide. Investigation of region-specific landscapes of hereditary HL is important for local healthcare and medical genetic services. Mutations in the SLC26A4 gene leading to nonsyndromic recessive deafness (DFNB4) and Pendred syndrome are common genetic causes of hereditary HL, at least in some Asian populations. We present for the first time the results of a thorough analysis of the SLC26A4 gene by Sanger sequencing in the large cohorts of patients with HL of unknown etiology belonging to two neighboring indigenous Turkic-speaking Siberian peoples (Tuvinians and Altaians). A definite genetic diagnosis based on the presence of biallelic SLC26A4 mutations was established for 28.2% (62/220) of all enrolled Tuvinian patients vs. 4.3% (4/93) of Altaian patients. The rate of the SLC26A4-related HL in Tuvinian patients appeared to be one of the highest among populations worldwide. The SLC26A4 mutational spectrum was characterized by the presence of Asian-specific mutations c.919-2A>G and c.2027T>A (p.Leu676Gln), predominantly found in Tuvinian patients, and c.2168A>G (p.His723Arg), which was only detected in Altaian patients. In addition, a novel pathogenic variant c.1545T>G (p.Phe515Leu) was found with high frequency in Tuvinian patients. Overall, based on the findings of this study and our previous research, we were able to uncover the genetic causes of HL in 50.5% of Tuvinian patients and 34.5% of Altaian patients.

5.
Genes (Basel) ; 11(7)2020 07 21.
Article in English | MEDLINE | ID: mdl-32708339

ABSTRACT

The mutations in the GJB2 gene (13q12.11, MIM 121011) encoding transmembrane protein connexin 26 (Cx26) account for a significant portion of hereditary hearing loss worldwide. Earlier we found a high prevalence of recessive GJB2 mutations c.516G>C, c.-23+1G>A, c.235delC in indigenous Turkic-speaking Siberian peoples (Tuvinians and Altaians) from the Tyva Republic and Altai Republic (Southern Siberia, Russia) and proposed the founder effect as a cause for their high rates in these populations. To reconstruct the haplotypes associated with each of these mutations, the genotyping of polymorphic genetic markers both within and flanking the GJB2 gene was performed in 28 unrelated individuals homozygous for c.516G>C (n = 18), c.-23+1G>A (n = 6), or c.235delC (n = 4) as well as in the ethnically matched controls (62 Tuvinians and 55 Altaians) without these mutations. The common haplotypes specific for mutations c.516G>C, c.-23+1G>A, or c.235delC were revealed implying a single origin of each of these mutations. The age of mutations estimated by the DMLE+ v2.3 software and the single marker method is discussed in relation to ethnic history of Tuvinians and Altaians. The data obtained in this study support a crucial role of the founder effect in the high prevalence of GJB2 mutations c.516G>C, c.-23+1G>A, c.235delC in indigenous populations of Southern Siberia.


Subject(s)
Connexin 26/genetics , Founder Effect , Hearing Loss/genetics , Mutation , Gene Frequency , Humans , Indigenous Peoples/genetics , Polymorphism, Single Nucleotide , Siberia
6.
Genes (Basel) ; 10(6)2019 06 05.
Article in English | MEDLINE | ID: mdl-31195736

ABSTRACT

Mutations in the GJB2 gene are the main cause for nonsyndromic autosomal recessive deafness 1A (DFNB1A) in many populations. GJB2 mutational spectrum and pathogenic contribution are widely varying in different populations. Significant efforts have been made worldwide to define DFNB1A molecular epidemiology, but this issue still remains open for some populations. The main aim of study is to estimate the DFNB1A prevalence and GJB2 mutational spectrum in Tuvinians-an indigenous population of the Tyva Republic (Southern Siberia, Russia). Sanger sequencing was applied to analysis of coding (exon 2) and non-coding regions of GJB2 in a cohort of Tuvinian patients with hearing impairments (n = 220) and ethnically matched controls (n = 157). Diagnosis of DFNB1A was established for 22.3% patients (28.8% of familial vs 18.6% of sporadic cases). Our results support that patients with monoallelic GJB2 mutations (8.2%) are coincidental carriers. Recessive mutations p.Trp172Cys, c.-23+1G>A, c.235delC, c.299_300delAT, p.Val37Ile and several benign variants were found in examined patients. A striking finding was a high prevalence of rare variant p.Trp172Cys (c.516G>C) in Tuvinians accounting for 62.9% of all mutant GJB2 alleles and a carrier frequency of 3.8% in controls. All obtained data provide important targeted information for genetic counseling of affected Tuvinian families and enrich current information on variability of GJB2 worldwide.


Subject(s)
Connexins/genetics , Deafness/genetics , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/genetics , Adolescent , Adult , Aged , Alleles , Child , Connexin 26 , Connexins/chemistry , Deafness/epidemiology , Deafness/physiopathology , Exons , Female , Genetic Association Studies , Genotype , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/physiopathology , Heterozygote , Humans , Male , Middle Aged , Mutation , Russia , Siberia/epidemiology , Structure-Activity Relationship , Young Adult
7.
BMC Med Genet ; 19(1): 138, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30086704

ABSTRACT

BACKGROUND: Mutations in GJB2 gene are a major causes of deafness and their spectrum and prevalence are specific for various populations. The well-known mutation c.35delG is more frequent in populations of Caucasian origin. Data on the c.35delG prevalence in Russia are mainly restricted to the European part of this country. We aimed to estimate the carrier frequency of c.35delG in Western Siberia and thereby update current data on the c.35delG prevalence in Russia. According to a generally accepted hypothesis, c.35delG originated from a common ancestor in the Middle East or the Mediterranean ~ 10,000-14,000 years ago and spread throughout Europe with Neolithic migrations. To test the c.35delG common origin hypothesis, we have reconstructed haplotypes bearing c.35delG and evaluated the approximate age of c.35delG in Siberia. METHODS: The carrier frequency of c.35delG was estimated in 122 unrelated hearing individuals living in Western Siberia. For reconstruction of haplotypes bearing c.35delG, polymorphic D13S141, D13S175, D13S1853 flanking the GJB2 gene, and intragenic rs3751385 were genotyped in deaf patients homozygous for c.35delG (n = 24) and in unrelated healthy individuals negative for c.35delG (n = 67) living in Siberia. RESULTS: We present updated carrier rates for c.35delG in Russia complemented by new data on c.35delG carrier frequency in Russians living in Western Siberia (4.1%). Two common D13S141-c.35delG-D13S175-D13S1853 haplotypes, 126-c.35delG-105-202 and 124-c.35delG-105-202, were reconstructed in the c.35delG homozygotes from Siberia. Moreover, identical allelic composition of the two most frequent c.35delG haplotypes restricted by D13S141 and D13S175 was established in geographically remote regions: Siberia and Volga-Ural region (Russia) and Belarus (Eastern Europe). CONCLUSIONS: Distribution of the c.35delG carrier frequency in Russia is characterized by pronounced ethno-geographic specificity with a downward trend from west to east. Comparative analysis of the c.35delG haplotypes supports a common origin of c.35delG in some regions of Russia (Volga-Ural region and Siberia) and in Eastern Europe (Belarus). A rough estimation of the c.35delG age in Siberia (about 4800 to 8100 years ago) probably reflects the early formation stages of the modern European population (including the European part of the contemporary territory of Russia) since the settlement of Siberia by Russians started only at the end of sixteenth century.


Subject(s)
Connexins/genetics , Haplotypes/genetics , Hearing Loss/genetics , Alleles , Connexin 26 , Deafness/genetics , Europe , Gene Frequency/genetics , Genotype , Heterozygote , Homozygote , Humans , Middle East , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Russia , Siberia , White People/genetics
8.
PLoS One ; 11(4): e0153841, 2016.
Article in English | MEDLINE | ID: mdl-27082237

ABSTRACT

Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.


Subject(s)
Deafness/genetics , Exome , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Transcription Factors/genetics , Cohort Studies , DNA Mutational Analysis , Exons , Family Health , Female , Genetic Variation , Genome, Human , Geography , Homozygote , Humans , Male , Mutation , Mutation, Missense , Pedigree , Siberia , Sulfate Transporters , Trans-Activators
SELECTION OF CITATIONS
SEARCH DETAIL
...