Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 11255, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27063401

ABSTRACT

Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic.

2.
Nat Commun ; 7: 10377, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26815737

ABSTRACT

In recent years, spin-orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin-orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin-orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current.

3.
Phys Rev Lett ; 113(19): 197203, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25415921

ABSTRACT

It is demonstrated that the threshold current for damping compensation can be reached in a 5 µm diameter YIG(20 nm)|Pt(7 nm) disk. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of I(dc) using a magnetic resonance force microscope (MRFM). It is shown that the magnetic losses of spin-wave modes existing in the magnetic insulator can be reduced or enhanced by at least a factor of 5 depending on the polarity and intensity of an in-plane dc current I(dc) flowing through the adjacent normal metal with strong spin-orbit interaction. Complete compensation of the damping of the fundamental mode by spin-orbit torque is reached for a current density of ∼3×10(11) A·m(-2), in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...