Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Infect Dis Ther ; 11(3): 1149-1160, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35404010

ABSTRACT

INTRODUCTION: Candida auris (C. auris) is an emerging nosocomial pathogen, and a sharp rise in cases of colonization and infection has been registered in intensive care units (ICUs) during the ongoing coronavirus disease 2019 (COVID-19) pandemic. The unfavorable resistance profile of C. auris and the potential high mortality of C. auris infections represent an important challenge for physicians. METHODS: We conducted a single-center retrospective study including all patients admitted to ICUs with isolation of C. auris in any non-sterile body site between February 20, 2020, and May 31, 2021. The primary aim of the study was to assess the cumulative incidence of C. auris candidemia in colonized patients. The secondary aim was to identify predictors of C. auris candidemia in the study population. RESULTS: During the study period, 157 patients admitted to ICUs in our hospital became colonized with C. auris; 59% of them were affected by COVID-19. Overall, 27 patients (17%) developed C. auris candidemia. The cumulative risk of developing C. auris candidemia was > 25% at 60 days after first detection of C. auris colonization. Seven patients with C. auris candidemia (26%) also developed a late recurrent episode. All C. auris blood isolates during the first occurring episode were resistant to fluconazole and susceptible to echinocandins, while 15 (56%) were resistant to amphotericin B. During late recurrent episodes, emergent resistance to caspofungin and amphotericin B occurred in one case each. In the final multivariable model, only multisite colonization retained an independent association with the development of C. auris candidemia. CONCLUSION: Candida auris candidemia may occur in up to one fourth of colonized critically ill patients, and multisite colonization is an independent risk factor for the development of candidemia. Implementing adequate infection control measures remains crucial to prevent colonization with C. auris and indirectly the subsequent development of infection.

2.
Article in English | MEDLINE | ID: mdl-35410035

ABSTRACT

The research was focused on the surveillance of the exposure of buffalo milkers in contact with both animals and potentially contaminated equipment, pointing attention on the diffusion of antibiotic-resistant Staphylococcus spp. The monitoring was performed for 12 months, allowing the collection of 600 raw milk and buffalo udder surface samples, 192 milking lanes, 400 milking clusters, 160 personal protective equipment (PPEs) and electronic devices surface samples in contact with the workers of four milking parlors located in Southern Italy. The analysis of the milk samples evidenced the highest exposure to the bacteria considered (and mainly to S. aureus) from late winter-spring seasons onward. The possible risk arising from buffalo udder, milking clusters, and lines were instead considered rather stable along the entire period of sampling. The PPEs turned out to be a source of contamination for milkers mainly during the spring and summer periods. The analysis for oxacillin/methicillin resistance revealed in all the farms enrolled an overall amount of 37.5% of Staphylococci strains (belonging to S. aureus, S. haemolyticus, S. pseudintermedius, S. chromogenes species) resistant both to methicillin and oxacillin. The investigation demonstrated that the potential transfer of pathogenic bacteria to humans would have a better chance to occur at milk resumption time (since late winter-spring onward) when the number of animals to be milked is greater and the activity in the milking parlor is more challenging. At the same time, the findings seem to point out that the potential risk may be worsened by a significant presence of oxacillin/methicillin-resistant Staphylococci, potentially resulting from irrational use of antibiotics.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Buffaloes , Methicillin Resistance , Microbial Sensitivity Tests , Milk/microbiology , Oxacillin , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus , Staphylococcus aureus
3.
Eur J Intern Med ; 94: 39-44, 2021 12.
Article in English | MEDLINE | ID: mdl-34511338

ABSTRACT

OBJECTIVES: The hypothesis of this study is that tocilizumab should affect common signs of infection due to its immunosuppressive properties. Primary aim of the study was to investigate whether the administration of tocilizumab to critically ill patients with COVID-19, led to a different clinical presentation of infectious complications compared to patients who did not receive tocilizumab. Secondary aim was investigating differences in laboratory parameters between groups. METHODS: Single-centre retrospective study, enrolling COVID-19 patients who developed a microbiologically confirmed infectious complication [ventilator associated pneumonia or bloodstream infection] after intensive care unit [ICU] admission and either treated with tocilizumab or not [controls]. RESULTS: A total of 58 patients were included, 25 treated with tocilizumab and 33 controls. Median time from tocilizumab administration to infection onset was 10 days [range 2-26]. Patients were 78% male, with median age 65 years [range 45-79]. At first clinical presentation of the infectious event, the frequency of hypotension [11/25, 44% vs. 11/33, 33%], fever [8/25, 32% vs. 10/33, 30%] or hypothermia [0/25,0%, vs. 2/33, 6%], and oxygen desaturation [6/25, 28% vs 4/33, 12%], as well as the frequency of SOFA score increase of ≥ 2 points [4/25, 16%,vs. 4/33, 12%] was similar in tocilizumab treated patients and controls [p>0.1 for all comparisons]. Among laboratory parameters, C-Reactive Protein elevation was reduced in tocilizumab treated patients compared to controls [8/25, 32% vs. 22/33, 67%, p=0.009]. CONCLUSION: The clinical features of infectious complications in critically ill patients with COVID-19 admitted to ICU were not affected by tocilizumab.


Subject(s)
COVID-19 Drug Treatment , Aged , Antibodies, Monoclonal, Humanized , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Standard of Care
4.
Ergonomics ; 63(3): 324-333, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31648616

ABSTRACT

This paper presents an innovative safety training method based on digital ergonomics simulations and serious games, which are games that focus on education. Digital ergonomics is intended to disseminate the culture of safety among workers, while serious games are used to train the operators on specific safety procedures and verify their skills. The results of the experimentation in a real industrial environment showed that, compared to the traditional training methodology, multimedia contents and quantitative ergonomic analyses improve the level of attention and the awareness of the workers about their own safety. However, serious games turned out to be promising training tools with regard to standard operating procedures that are usually difficult or dangerous to simulate in a real working scenario without stopping production. Practitioner summary: Digital ergonomics and serious games are used to disseminate the culture of safety among the workers and for safety training. Our results show that the proposed methodology improves the level of attention and provides a better feedback about the actual skills of the workers than the standard educational strategies. Abbreviations.


Subject(s)
Computer-Assisted Instruction/methods , Ergonomics/methods , Occupational Health/education , Simulation Training/methods , Video Games , Workplace , Humans
5.
Front Public Health ; 5: 344, 2017.
Article in English | MEDLINE | ID: mdl-29326919

ABSTRACT

Magnetic resonance imaging (MRI) has evolved rapidly over the past few decades as one of the most flexible tools in medical research and diagnostic imaging. MRI facilities are important sources of multiple exposure to electromagnetic fields for both patients and health-care staff, due to the presence of electromagnetic fields of multiple frequency ranges, different temporal variations, and field strengths. Due to the increasing use and technological advancements of MRI systems, clearer insights into exposure assessment and a better understanding of possible harmful effects due to long-term exposures are highly needed. In the present exploratory study, exposure assessment and biomonitoring of MRI workers at the Radio-diagnostics Unit of the National Cancer Institute of Naples "Pascale Foundation" (Naples, Italy) have been carried out. In particular, exposure to the MRI static magnetic field (SMF) has been evaluated by means of personal monitoring, while an application tool has been developed to provide an estimate of motion-induced, time-varying electric fields. Measurement results have highlighted a high day-to-day and worker-to-worker variability of the exposure to the SMF, which strongly depends on the characteristics of the environment and on personal behaviors, and the developed application tool can be adopted as an easy-to-use tool for rapid and qualitative evaluation of motion-induced, time-varying electric field exposure. Regarding biomonitoring, the 24 workers of the Radio-diagnostics Unit were enrolled to evaluate both spontaneous and mitomycin C-induced chromosomal fragility in human peripheral blood lymphocytes, by means of the cytokinesis-block micronucleus assay. The study subjects were 12 MRI workers, representative of different professional categories, as the exposed group, and 12 workers with no MRI exposure history, as the reference group. The results show a high worker-to-worker variability for both field exposure assessment and biomonitoring, as well as several critical issues and practicalities to be faced with in this type of investigations. The procedures for risk assessment and biomonitoring proposed here can be used to inform future research in this field, which will require a refinement of exposure assessment methods and an enlargement of the number of subjects enrolled in the biomonitoring study to gain robust statistics and reliable results.

6.
Sci Rep ; 6: 19398, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26762783

ABSTRACT

The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.


Subject(s)
Fibroblasts/metabolism , Fibroblasts/radiation effects , Magnetic Fields , Cell Line , Cell Survival/radiation effects , DNA Damage/radiation effects , Electromagnetic Fields/adverse effects , Humans , Magnetic Fields/adverse effects , Magnetic Resonance Imaging , Occupational Exposure , Reactive Oxygen Species/metabolism , Time Factors
7.
Materials (Basel) ; 7(1): 457-470, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-28788467

ABSTRACT

Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000-400 cm-1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS) chemometrics, the Linear Calibration Curve Method (LCM) and the Method of Additions (MoA). Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight) can be determined with precision and accuracy (errors less than 0.1).

SELECTION OF CITATIONS
SEARCH DETAIL
...