Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22177-22188, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648102

ABSTRACT

Expanding upon the burgeoning discipline of magnonics, this research elucidates the intricate dynamics of spin waves (SWs) within three-dimensional nanoenvironments. It marks a shift from traditionally used planar systems to exploration of magnetization configurations and the resulting dynamics within 3D nanostructures. This study deploys micromagnetic simulations alongside ferromagnetic resonance measurements to scrutinize magnetic gyroids, periodic chiral configurations composed of chiral triple junctions with a period in nanoscale. Our findings uncover distinctive attributes intrinsic to the gyroid network, most notably the localization of collective SW excitations and the sensitivity of the gyroid's ferromagnetic response to the orientation of the static magnetic field, a correlation closely tied to the crystallographic alignment of the structure. Furthermore, we show that for the ferromagnetic resonance, multidomain gyroid films can be treated as a magnonic material with effective magnetization scaled by its filling factor. The implications of our research carry the potential for practical uses such as an effective, metamaterial-like substitute for ferromagnetic parts and lay the groundwork for radio frequency filters. The growing areas of 3D magnonics and spintronics present exciting opportunities to investigate and utilize gyroid nanostructures for signal processing purposes.

2.
Phys Rev Lett ; 123(19): 197204, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765192

ABSTRACT

We present a comprehensive experimental and numerical study of magnetization dynamics in a thin metallic film triggered by single-cycle terahertz pulses of ∼20 MV/m electric field amplitude and ∼1 ps duration. The experimental dynamics is probed using the femtosecond magneto-optical Kerr effect, and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing tabletop terahertz sources.

3.
Nat Commun ; 10(1): 543, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710092

ABSTRACT

Energy-efficient switching of magnetization is a central problem in nonvolatile magnetic storage and magnetic neuromorphic computing. In the past two decades, several efficient methods of magnetic switching were demonstrated including spin torque, magneto-electric, and microwave-assisted switching mechanisms. Here we experimentally show that low-dimensional magnetic chaos induced by alternating spin torque can strongly increase the rate of thermally-activated magnetic switching in a nanoscale ferromagnet. This mechanism exhibits a well-pronounced threshold character in spin torque amplitude and its efficiency increases with decreasing spin torque frequency. We present analytical and numerical calculations that quantitatively explain these experimental findings and reveal the key role played by low-dimensional magnetic chaos near saddle equilibria in enhancement of the switching rate. Our work unveils an important interplay between chaos and stochasticity in the energy assisted switching of magnetic nanosystems and paves the way towards improved energy efficiency of spin torque memory and logic.

SELECTION OF CITATIONS
SEARCH DETAIL
...