Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 43: 103638, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39002223

ABSTRACT

Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning and interpreting the predictive features, as well as, how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Additionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interests (ROIs) extracted from MRIs, with symbolic representations of tabular data. We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking stroke survivors who participated in the PLORAS study. Each participant was assigned to one of five different groups that were matched for initial severity of symptoms, recovery time, left lesion size and the months or years post-stroke that spoken description scores were collected. Training and validation were carried out on the first four groups. The fifth (lock-box/test set) group was used to test how well model accuracy generalises to new (unseen) data. The classification accuracy for a baseline logistic regression was 0.678 based on lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and recovery time were successively added. The highest classification accuracy (0.854), area under the curve (0.899) and F1 score (0.901) were observed when 8 regions of interest were extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network (ResNet). This was also the best model when data were limited to the 286 participants with moderate or severe initial aphasia (with area under curve = 0.865), a group that would be considered more difficult to classify. Our findings demonstrate how imaging and tabular data can be combined to achieve high post-stroke classification accuracy, even when the dataset is small in machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners.

2.
PLoS One ; 15(9): e0238926, 2020.
Article in English | MEDLINE | ID: mdl-32925940

ABSTRACT

Fractures of the wrist are common in Emergency Departments, where some patients are treated with a procedure called Manipulation under Anaesthesia. In some cases, this procedure is unsuccessful and patients need to revisit the hospital where they undergo surgery to treat the fracture. This work describes a geometric semi-automatic image analysis algorithm to analyse and compare the x-rays of healthy controls and patients with dorsally displaced wrist fractures (Colles' fractures) who were treated with Manipulation under Anaesthesia. A series of 161 posterior-anterior radiographs from healthy controls and patients with Colles' fractures were acquired and analysed. The patients' group was further subdivided according to the outcome of the procedure (successful/unsuccessful) and pre- or post-intervention creating five groups in total (healthy, pre-successful, pre-unsuccessful, post-successful, post-unsuccessful). The semi-automatic analysis consisted of manual location of three landmarks (finger, lunate and radial styloid) and automatic processing to generate 32 geometric and texture measurements, which may be related to conditions such as osteoporosis and swelling of the wrist. Statistical differences were found between patients and controls, as well as between pre- and post-intervention, but not between the procedures. The most distinct measurements were those of texture. Although the study includes a relatively low number of cases and measurements, the statistical differences are encouraging.


Subject(s)
Colles' Fracture/diagnostic imaging , Colles' Fracture/therapy , Radiographic Image Interpretation, Computer-Assisted/methods , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Manipulation, Orthopedic , Middle Aged , Radiography , Treatment Outcome
3.
IEEE Trans Neural Netw Learn Syst ; 29(2): 246-258, 2018 02.
Article in English | MEDLINE | ID: mdl-27845678

ABSTRACT

Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

4.
Neural Comput ; 18(7): 1711-38, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16764519

ABSTRACT

The importance of the efforts to bridge the gap between the connectionist and symbolic paradigms of artificial intelligence has been widely recognized. The merging of theory (background knowledge) and data learning (learning from examples) into neural-symbolic systems has indicated that such a learning system is more effective than purely symbolic or purely connectionist systems. Until recently, however, neural-symbolic systems were not able to fully represent, reason, and learn expressive languages other than classical propositional and fragments of first-order logic. In this article, we show that nonclassical logics, in particular propositional temporal logic and combinations of temporal and epistemic (modal) reasoning, can be effectively computed by artificial neural networks. We present the language of a connectionist temporal logic of knowledge (CTLK). We then present a temporal algorithm that translates CTLK theories into ensembles of neural networks and prove that the translation is correct. Finally, we apply CTLK to the muddy children puzzle, which has been widely used as a test-bed for distributed knowledge representation. We provide a complete solution to the puzzle with the use of simple neural networks, capable of reasoning about knowledge evolution in time and of knowledge acquisition through learning.


Subject(s)
Artificial Intelligence , Computer Simulation , Learning/physiology , Logic , Neural Networks, Computer , Algorithms , Humans , Knowledge , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...