Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 14(1): e21594, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35228952

ABSTRACT

Sudden cardiac arrest (SCA) remains one of the most prevalent cardiovascular emergencies in the world. The development of international protocols and the use of accessible devices such as automated external defibrillators (AEDs) allowed for the standardization and organization of medical care related to SCA. When defibrillation is performed within five minutes of starting ventricular fibrillation (VF) and pulseless ventricular tachycardia (VT), the victim survival rate has increased considerably. Therefore, training healthcare professionals to use AEDs correctly is essential to improve patient outcomes and response time in the intervention. In this technical report, we advocate simulation-based education as a teaching methodology and an essential component of drone adaptation, novel technology, that can deliver AEDs to the site, as well as a training scenario to teach healthcare professionals how to operate the real-time communication components of drones and AEDs efficiently. Studies have suggested that simulation can be an effective way to train healthcare professionals. Through teaching methodology using simulation, training these audiences has the potential to reduce the response time to intervention, consequently, increasing the patient's chance of surviving.

2.
Cureus ; 12(7): e9134, 2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32789074

ABSTRACT

Recent surges in COVID-19 cases have generated an urgent global demand for ventilators. This demand has led to the development of numerous low-cost ventilation devices, but there has been less emphasis on training health professionals to use these new devices safely. The aim of this technical report is twofold: first, to describe the design and manufacturing process of the automated inflating resuscitator (AIR), a 3D-printed ventilator training device which operates on the principle of pushing a bag valve mask; second, to present a simulation scenario that can be used for training health professionals how to use this and similar, low-cost, 3D-printed ventilators in the context of ventilator shortages caused by COVID-19. To this end, the AIR was designed in an expedient manner in accordance with basic functionality established by the Medicines and Healthcare Products Regulatory Agency (United Kingdom) for provisional clinical use in light of COVID-19.

3.
Cureus ; 12(6): e8834, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32742845

ABSTRACT

Trauma is a major cause of premature death and disability worldwide, with a disproportionate number of deaths occurring in rural and remote areas. Prehospital care is a key link in the chain of trauma survival and its role may be currently underestimated. Therefore, addressing deficiencies in prehospital trauma care may help to improve outcomes. Several potential solutions have been proposed to address the disparities that exist in rural prehospital trauma care, some of which focus on educational endeavors. Simulation-based medical education (SBME) is one cost-effective strategy to train healthcare providers in high-acuity, low-opportunity (HALO) scenarios, such as those encountered during major trauma. The aim of this technical report is to present a mass casualty simulation scenario that is intended for healthcare providers in rural and remote locations to refine their skills and comfort level with such cases. It emphasizes prehospital trauma management and effective communication skills among healthcare teams, which are two key elements in improving trauma outcomes.

4.
Cureus ; 12(12): e12084, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33489502

ABSTRACT

During the current coronavirus pandemic, significant emphasis has been placed on the importance of mitigating nosocomial spread of coronavirus disease 2019 (COVID-19). One important consideration involves the appropriate use of effective personal protective equipment (PPE), which may reduce a healthcare provider's likelihood of becoming infected while simultaneously minimizing exposure to other patients that they care for. This may reduce demands placed on the healthcare system and help to preserve the workforce. First, the importance of PPE design cannot be underestimated, as the manufacturing process must strive to maximize protection of the user while ensuring adequate comfort. Second, it has been demonstrated that inadequate education and training can significantly impact compliance with PPE recommendations. Technique regarding donning and doffing of PPE is crucial to the protection of those who don it. The purpose of this technical report is two-fold: first, to describe some important considerations in the manufacturing and design process of face shields to maximize protection for healthcare providers, and second, to describe a simulation scenario that may be used to train healthcare workers in the appropriate donning and doffing of PPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...