Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 279: 116487, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810285

ABSTRACT

Persistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. ß-hexachlorocyclohexane (ß-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to ß-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice. As shown by western blot and qPCR analyses, the administration of ß-HCH triggered a modulation of NF-κB, a key factor influencing both inflammation and pro-inflammatory cytokines expression. We demonstrated by proteomic and western blot techniques epigenetic modifications in H3 histone induced by ß-HCH. Histone acetylation of H3K9 and H3K27 increased in N2a, and in the prefrontal cortex of C57BL/6 mice administered with ß-HCH, whereas it decreased in BV-2 cells and in the hippocampus. We also observed a severe detrimental effect on recognition memory and spatial navigation by the Novel Object Recognition Test (NORT) and the Object Place Recognition Task (OPRT) behavioural tests. Cognitive impairment was linked to decreased expression of the genes BDNF and SNAP-25, which are mediators involved in synaptic function and activity. The obtained results expand our understanding of the harmful impact produced by ß-HCH exposure by highlighting its implication in the pathogenesis of neurological diseases. These findings will support intervention programs to limit the risk induced by exposure to POPs. Regulatory agencies should block further illicit use, causing environmental hazards and endangering human and animal health.


Subject(s)
Cognitive Dysfunction , Epigenesis, Genetic , Hexachlorocyclohexane , Histones , Mice, Inbred C57BL , Animals , Hexachlorocyclohexane/toxicity , Cognitive Dysfunction/chemically induced , Mice , Histones/metabolism , Epigenesis, Genetic/drug effects , Male , Protein Processing, Post-Translational/drug effects , Neuroinflammatory Diseases/chemically induced , Microglia/drug effects , Neurons/drug effects , Neurons/pathology , Environmental Pollutants/toxicity
2.
Arch Biochem Biophys ; 745: 109714, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37549802

ABSTRACT

RNA is a fundamental nucleic acid for life and it plays important roles in the regulation of gene transcription, post-transcriptional regulation, and epigenetic regulation. Recently, the focus on this nucleic acid has significantly increased due to the development of mRNA vaccines and RNA-based gene therapy protocols. Unfortunately, RNA based products show constrains mainly owing to instability and easy degradability of the RNA molecules. Indeed, unlike the DNA molecule which has a great intrinsic stability, RNA is more prone to degradation and this process is accelerated under thermal treatment. Here we describe a method that involves the use of Natural Deep Eutectic Solvents (NaDES) capable of slowing down RNA degradation process. Our results show that this technology seems suitable for improving the stability of specific RNA molecules particularly susceptible to thermal-induced degradation. Therefore, this technique represents a valuable tool to stabilize RNA molecules used in gene therapy and mRNA vaccines.


Subject(s)
Deep Eutectic Solvents , RNA , Solvents , Epigenesis, Genetic , Plant Extracts
3.
Cells ; 11(8)2022 04 09.
Article in English | MEDLINE | ID: mdl-35455964

ABSTRACT

Alzheimer's disease (AD) is an irreversible age-related neurodegenerative disorder clinically characterized by severe memory impairment, language deficits and cognitive decline. The major neuropathological hallmarks of AD include extracellular deposits of the ß-amyloid (Aß) peptides and cytoplasmic neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. The accumulation of plaques and tangles in the brain triggers a cascade of molecular events that culminate in neuronal damage and cell death. Despite extensive research, our understanding of the molecular basis of AD pathogenesis remains incomplete and a cure for this devastating disease is still not available. A growing body of evidence in different experimental models suggests that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation might be a crucial component of the molecular network of interactions responsible for AD pathogenesis. In this work, we combined genetic, molecular and biochemical approaches to investigate the effects of two different PARP-1 inhibitors (olaparib and MC2050) in Drosophila models of Alzheimer's disease by exploring their neuroprotective and therapeutic potential in vivo. We found that both pharmacological inhibition and genetic inactivation of PARP-1 significantly extend lifespan and improve the climbing ability of transgenic AD flies. Consistently, PARP-1 inhibitors lead to a significant decrease of Aß42 aggregates and partially rescue the epigenetic alterations associated with AD in the brain. Interestingly, olaparib and MC2050 also suppress the AD-associated aberrant activation of transposable elements in neuronal tissues of AD flies.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Drosophila/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
4.
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408747

ABSTRACT

trans-Resveratrol is a natural bioactive compound with well-recognized health promoting effects. When exposed to UV light, this compound can undergo a photochemically induced trans/cis isomerization and a 6π electrochemical cyclization with the subsequent formation of 2,4,6-trihydroxyphenanthrene (THP). THP is a potentially harmful compound which can exert genotoxic effects. In this work we improved the chromatographic separation and determination of the two resveratrol isomers and of THP by using a non-commercial pentafluorophenyl stationary phase. We assessed the effect of natural deep eutectic solvents (NaDES) as possible photo-protective agents by evaluating cis-resveratrol isomer and THP formation under different UV-light exposure conditions with the aim of enhancing resveratrol photostability and inhibiting THP production. Our results demonstrate a marked photoprotective effect exerted by glycerol-containing NaDES, and in particular by proline/glycerol NaDES, which exerts a strong inhibitory effect on the photochemical isomerization of resveratrol and significantly limits the formation of the toxic derivative THP. Considering the presence of resveratrol in various commercial products, these results are of note in view of the potential genotoxic risk associated with its photochemical degradation products and in view of the need for the development of green, eco-sustainable and biocompatible resveratrol photo-stable formulations.


Subject(s)
Deep Eutectic Solvents , Glycerol , Isomerism , Phenanthrenes , Resveratrol/chemistry , Resveratrol/pharmacology , Solvents/chemistry
5.
Amino Acids ; 53(10): 1559-1568, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34536129

ABSTRACT

S-adenosyl-L-methionine (SAM), the main endogenous methyl donor, is the adenosyl derivative of the amino acid methionine, which displays many important roles in cellular metabolism. It is widely used as a food supplement and in some countries is also marketed as a drug. Its interesting nutraceutical and pharmacological properties prompted us to evaluate the pharmacokinetics of a new form of SAM, the phytate salt. The product was administered orally to rats and pharmacokinetic parameters were evaluated by comparing the results with that obtained by administering the SAM tosylated form (SAM PTS). It was found that phytate anion protects SAM from degradation, probably because of steric hindrance exerted by the counterion, and that the SAM phytate displayed significant better pharmacokinetic parameters compared to SAM PTS. These results open to the perspective of the use of new salts of SAM endowed with better pharmacokinetic properties.


Subject(s)
S-Adenosylmethionine/chemistry , S-Adenosylmethionine/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Biological Availability , Drug Stability , Female , Male , Phytic Acid/chemistry , Rats, Sprague-Dawley , S-Adenosylmethionine/administration & dosage , S-Adenosylmethionine/blood
6.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299330

ABSTRACT

The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-ß peptide (Aß). The morphological evaluation showed that Aß treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aß. Moreover, URB597 reduced both the increase of Rho protein activation in Aß-treated BV-2 cells and the Aß-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Benzamides/pharmacology , Carbamates/pharmacology , Microglia/drug effects , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amidohydrolases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , Animals , Arachidonic Acids/metabolism , Cell Line , Cell Movement/physiology , Cell Polarity/physiology , Cytokines/metabolism , Cytoskeleton/metabolism , Disease Models, Animal , Endocannabinoids/metabolism , Mice , Microglia/pathology , Polyunsaturated Alkamides/metabolism
7.
PLoS One ; 16(6): e0252555, 2021.
Article in English | MEDLINE | ID: mdl-34061886

ABSTRACT

C. albicans is a commensal organism present in the human microbiome of more than 60% of the healthy population. Transition from commensalism to invasive candidiasis may occur after a local or a general failure of host's immune system. This transition to a more virulent phenotype may reside either on the capacity to form hyphae or on an acquired resistance to antifungal drugs. Indeed, overexpression of genes coding drug efflux pumps or adhesins, cell wall proteins facilitating the contact between the fungus and the host, usually marks the virulence profile of invasive Candida spp. In this paper, we compare virulence of two clinical isolates of C. albicans with that of laboratory-induced resistant strains by challenging G. mellonella larvae with these pathogens along with monitoring transcriptional profiles of drug efflux pumps genes CDR1, CDR2, MDR1 and the adhesin genes ALS1 and HWP1. Although both clinical isolates were found resistant to both fluconazole and micafungin they were found less virulent than laboratory-induced resistant strains. An unexpected behavior emerged for the former clinical isolate in which three genes, CDR1, CDR2 and HWP1, usually correlated with virulence, although hyperexpressed, conferred a less aggressive phenotype. On the contrary, in the other isolate, we observed a decreased expression of CDR1, CDR2 and HWP1as well as of MDR1 and ALS1 that may be consistent with the less aggressive performance observed in this strain. These altered gene expressions might directly influence Candida virulence or they might be an epiphenomenon of a vaster rearrangement occurred in these strains during the challenge with the host's environment. An in-deepth comprehension of this scenario could be crucial for developing interventions able to counteract C. albicans invasiveness and lethality.


Subject(s)
Candida albicans/genetics , Candida albicans/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Expression , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Animals , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/isolation & purification , Candidiasis/microbiology , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Female , Fluconazole/pharmacology , Humans , Hyphae/genetics , Larva/microbiology , Lepidoptera/microbiology , Micafungin/pharmacology , Microbial Sensitivity Tests , Phenotype , Virulence/genetics
8.
J Neuropathol Exp Neurol ; 80(3): 265-273, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33598674

ABSTRACT

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.


Subject(s)
Brain/metabolism , Disease Models, Animal , Histones/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Receptors, Serotonin/metabolism , Rett Syndrome/metabolism , Acetylation , Animals , Brain/drug effects , Female , Histones/genetics , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Piperazines/pharmacology , Piperazines/therapeutic use , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Serotonin Receptor Agonists/pharmacology , Serotonin Receptor Agonists/therapeutic use
9.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796621

ABSTRACT

Extra virgin olive oil (EVOO) phenols represent a significant part of the intake of antioxidants and bioactive compounds in the Mediterranean diet. In particular, hydroxytyrosol (HTyr), tyrosol (Tyr), and the secoiridoids oleacein and oleocanthal play central roles as anti-inflammatory, neuro-protective and anti-cancer agents. These compounds cannot be easily obtained via chemical synthesis, and their isolation and purification from EVOO is cumbersome. Indeed, both processes involve the use of large volumes of organic solvents, hazardous reagents and several chromatographic steps. In this work we propose a novel optimized procedure for the green extraction, isolation and purification of HTyr, Tyr, oleacein and oleocanthal directly from EVOO, by using a Natural Deep Eutectic Solvent (NaDES) as an extracting phase, coupled with preparative high-performance liquid chromatography. This purification method allows the total recovery of the four components as single pure compounds directly from EVOO, in a rapid, economic and ecologically sustainable way, which utilizes biocompatible reagents and strongly limits the use or generation of hazardous substances.


Subject(s)
Aldehydes/isolation & purification , Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Cyclopentane Monoterpenes/isolation & purification , Olive Oil/chemistry , Phenols/isolation & purification , Phenylethyl Alcohol/analogs & derivatives , Plant Extracts/isolation & purification , Phenylethyl Alcohol/isolation & purification
10.
Nutrients ; 12(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575571

ABSTRACT

Microglia, the innate immune cells of the CNS, respond to brain injury by activating and modifying their morphology. Our study arises from the great interest that has been focused on blueberry (BB) for the antioxidant and pharmacological properties displayed by its components. We analyzed the influence of hydroalcoholic BB extract in resting or lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. BB exerted a protective effect against LPS-induced cytotoxicity, as indicated by cell viability. BB was also able to influence the actin cytoskeleton organization, to recover the control phenotype after LPS insult, and also to reduce LPS-driven migration. We evaluated the activity of Rho and Rac1 GTPases, which regulate both actin cytoskeletal organization and migratory capacity. LPS caused an increase in Rac1 activity, which was counteracted by BB extract. Furthermore, we demonstrated that, in the presence of BB, mRNA expression of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α decreased, as did the immunofluorescence signal of iNOS, whereas that of Arg-1 was increased. Taken together, our results show that, during the inflammatory response, BB extract shifts the M1 polarization towards the M2 phenotype through an actin cytoskeletal rearrangement. Based on that, we might consider BB as a nutraceutical with anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Blueberry Plants , Lipopolysaccharides/pharmacology , Microglia/drug effects , Plant Extracts/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured/drug effects , Mice , Microscopy, Fluorescence
11.
Front Neurosci ; 13: 1112, 2019.
Article in English | MEDLINE | ID: mdl-31680842

ABSTRACT

Diabetes mellitus is one of the major risk factors for cognitive dysfunction. The pathogenesis of brain impairment caused by chronic hyperglycemia is complex and includes mitochondrial dysfunction, neuroinflammation, neurotransmitters' alteration, and vascular disease, which lead to cognitive impairment, neurodegeneration, loss of synaptic plasticity, brain aging, and dementia. Glucagon-like peptide-1 (GLP-1), a gut released hormone, is attracting attention as a possible link between metabolic and brain impairment. Several studies have shown the influence of GPL-1 on neuronal functions such as thermogenesis, blood pressure control, neurogenesis, neurodegeneration, retinal repair, and energy homeostasis. Moreover, modulation of GLP-1 activity can influence amyloid ß peptide aggregation in Alzheimer's disease (AD) and dopamine (DA) levels in Parkinson's disease (PD). GLP-1 receptor agonists (GLP-1RAs) showed beneficial actions on brain ischemia in animal models, such as the reduction of cerebral infarct area and the improvement of neurological deficit, acting mainly through inhibition of oxidative stress, inflammation, and apoptosis. They might also exert a beneficial effect on the cognitive impairment induced by diabetes or obesity improving learning and memory by modulating synaptic plasticity. Moreover, GLP-1RAs reduced hippocampal neurodegeneration. Besides this, there are growing evidences on neuroprotective effects of these agonists in animal models of neurodegenerative diseases, regardless of diabetes. In PD animal models, GPL-1RAs were able to protect motor activity and dopaminergic neurons whereas in AD models, they seemed to improve nearly all neuropathological features and cognitive functions. Although further clinical studies of GPL-1RAs in humans are needed, they seem to be a promising therapy for diabetes-associated cognitive decline.

12.
Molecules ; 24(15)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390787

ABSTRACT

Phyllanthus orbicularis (Phyllanthaceae) is an endemic evergreen tropical plant of Cuba that grows in the western part of the island and is used in traditional medicine as an infusion. The aqueous extract of this plant presents a wide range of pharmacological activitiessuch as antimutagenic, antioxidant and antiviral effects. Given the many beneficial effects and the great interest in the development of new pharmacological products from natural sources, the aim of this work was to investigate the phytochemistry of this species and to elucidate the structure of the main bioactive principles. Besides the presence of several known polyphenols, the major constituent was hitherto not described. The chemical structure of this compound, here named Fideloside, was elucidated by means of HR-ESIMS/MSn, 1D/2D NMR, FT-IR, and ECD as (2R,3R)-(-)-3',4',5,7-tetrahydroxydihydroflavonol-8-C-ß-D-glucopyranoside. The compound, as well as the plant aqueous preparations, showed promising bioactive properties, i.e., anti-inflammatory capacity in human explanted monocytes, corroborating future pharmacological use for this new natural C-glycosyl flavanonol.


Subject(s)
Phyllanthus/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Chromatography, High Pressure Liquid , Cytokines/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Models, Molecular , Molecular Structure , Monocytes/drug effects , Monocytes/metabolism , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Spectrum Analysis
13.
Int J Mol Sci ; 20(3)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736391

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aß) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aß. BV2 murine microglia cells treated with both Aß25⁻35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1ß, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aß only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aß-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aß1⁻42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arabidopsis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Locomotion/drug effects , Mass Spectrometry , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neurons/drug effects , Neurons/metabolism , Phytochemicals/chemistry , Protein Transport
14.
Biochem Pharmacol ; 167: 50-57, 2019 09.
Article in English | MEDLINE | ID: mdl-30414941

ABSTRACT

Amyloid-treated microglia prime and sustain neuroinflammatory processes in the central nervous system activating different signalling pathways inside the cells. Since a key role for PARP-1 has been demonstrated in inflammation and in neurodegeneration, we investigated PARylated proteins in resting and in ß-amyloid peptide treated BV2 microglial cells. A total of 1158 proteins were identified by mass spectrometry with 117 specifically modified in the amyloid-treated cells. Intervention of PARylation on the proteome of microglia showed to be widespread in different cellular districts and to affect various cellular pathways, highlighting the role of this dynamic post-translational modification in cellular regulation. Ubiquitination is one of the more enriched pathways, encompassing PARylated proteins like NEDD4, an E3 ubiquitine ligase and USP10, a de-ubiquitinase, both associated with intracellular responses induced by ß-amyloid peptide challenge. PARylation of NEDD4 may be involved in the recruiting of this protein to the plasma membrane where it regulates the endocytosis of AMPA receptors, whereas USP10 may be responsible for the increase of p53 levels in amyloid stimulated microglia. Unfolded protein response and Endoplasmic Reticulum Stress pathways, strictly correlated with the Ubiquitination process, also showed enrichment in PARylated proteins. PARylation may thus represent one of the molecular switches responsible for the transition of microglia towards the inflammatory microglia phenotype, a pivotal player in brain diseases including neurodegenerative processes. The establishment of trials with PARP inhibitors to test their efficacy in the containment of neurodegenerative diseases may be envisaged.


Subject(s)
Amyloid beta-Peptides/pharmacology , Cell Survival/physiology , Microglia/metabolism , Peptide Fragments/pharmacology , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Cell Line , Cell Survival/drug effects , Mice , Microglia/drug effects
16.
Adv Exp Med Biol ; 975 Pt 1: 535-549, 2017.
Article in English | MEDLINE | ID: mdl-28849480

ABSTRACT

There is an increasing interest for analytical methods aimed to detect biological sulfur-containing amines, because of their involvement in human diseases and metabolic disorders. This work describes an improved HPLC method for the determination of sulfur containing amino acids and amines from different biological matrices. We optimized a pre-column derivatization procedure using dabsyl chloride, in which dabsylated products can be monitored spectrophotometrically at 460 nm. This method allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, taurine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell lysates. Moreover, the method is suitable for the study of physiological and non-physiological derivatives of taurine and glutathione such as hypotaurine, homotaurine, homocysteic acid and S-acetylglutathione. The present method displays good efficiency of derivatization, having the advantage to give rise to stable products compared to other derivatizing agents such as o-phthalaldehyde and dansyl chloride.With this method, we provide a tool to study sulfur cycle from a metabolic point of view in relation to the pattern of biological amino-compounds, allowing researchers to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.


Subject(s)
Amino Acids/analysis , Biogenic Amines/analysis , Chromatography, High Pressure Liquid/methods , Sulfur Compounds/analysis , Animals , Humans , Mice
17.
Adv Exp Med Biol ; 975 Pt 1: 573-583, 2017.
Article in English | MEDLINE | ID: mdl-28849483

ABSTRACT

Considerable strides have been made in understanding the oxidative mechanisms involved in the final steps of the cysteine pathway leading to taurine. The oxidation of sulfinates, hypotaurine and cysteine sulfinic acid, to the respective sulfonates, taurine and cysteic acid, has never been associated with any specific enzyme. Conversely, there is strong evidence that in vivo formation of taurine and cysteic acid is the result of sulfinate interaction with a variety of biologically relevant oxidants. In the last decade, many experiments have been performed to understand whether peroxynitrite, nitrogen dioxide and carbonate radical anion could be included in the biologically relevant reactive species capable of oxidizing sulfinates. Thanks to this work, it has been possible to highlight two possible reaction mechanisms (direct and indirect reaction) of sulfinates with reactive oxygen and nitrogen species.The sulfinates oxidation, mediated by peroxynitrite, is an example of both reaction mechanisms: through a two-electron-direct-reaction with peroxynitrite or through a one-electron-indirect-transfer reaction. In the indirect mechanism, the peroxynitrite homolysis releases hydroxyl and nitrogen dioxide radical and in addition the degradation of short-lived adduct formed by peroxynitrite and CO2 can generate carbonate radical anion. The reaction of hypotaurine and cysteine sulfinic acid with peroxynitrite-derived radicals is accompanied by extensive oxygen uptake with the generation of transient intermediates, which can begin a reaction by an oxygen-dependent mechanism with the sulfonates, taurine, and cysteic acid as final products. Due to pulse radiolysis studies, it has been shown that transient sulfonyl radicals (RSO2•) have been produced during the oxidation of both sulfinates by one-electron transfer reaction.The purpose is to analyze all the aspects of the reactive mechanism in the sulfinic group oxidation of hypotaurine and cysteine sulfinic acid through the results obtained from our laboratory in recent years.


Subject(s)
Reactive Nitrogen Species/chemistry , Reactive Oxygen Species/chemistry , Sulfinic Acids/chemistry , Taurine/analogs & derivatives , Animals , Humans , Oxidation-Reduction , Taurine/chemistry
18.
Acta Diabetol ; 54(9): 833-842, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28608282

ABSTRACT

AIMS: In diabetes, hyperglycemia increases reactive oxygen species that induce DNA damage and poly(ADP-ribose)polymerase activation. The aim of this study is to characterize the proteomic profile and the role of poly(ADP-ribosylation) in patients with type 2 diabetes. METHODS: A proteomic platform based on 2DE and MALDI-ToF spectrometry was applied to peripheral blood mononuclear cells obtained from two different cohorts in which diabetic (n = 14) and normoglycemic patients (n = 11) were enrolled. RESULTS: Proteomic maps identified WD repeat protein, 78-kDa glucose-regulated protein precursor and myosin regulatory light chain 2, as unique proteins in diabetic patients; vimentin, elongation factor 2, annexin A1, glutathione S-transferase P, moesin and cofilin-1 as unique in the normoglycemic; and calreticulin, rho GDP-dissociation inhibitor 2, protein disulfide isomerase and tropomyosin alpha-4-chain as differentially expressed between the two cohorts. An enrichment in PARylation in diabetic patients was observed in particular, affecting GAPDH and α-Enolase leading to a decrease in their enzymatic activity. CONCLUSIONS: As the GAPDH and α-Enolase are involved in energy metabolism, protein synthesis and DNA repair, loss of their function or change in their activity can significantly contribute to the molecular mechanisms responsible for the development of type 2 diabetes. These data along with the proteomic profile associated with the disease may provide new insight into the pathophysiology of type 2 diabetes.


Subject(s)
ADP-Ribosylation , Diabetes Mellitus, Type 2/metabolism , Leukocytes, Mononuclear/metabolism , Aged , Animals , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Female , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Male , Middle Aged , Proteomics , Reactive Oxygen Species/metabolism
19.
Int J Mol Sci ; 18(9)2017 Sep 19.
Article in English | MEDLINE | ID: mdl-32961650

ABSTRACT

Resveratrol stability in solution can be improved by combining the polyphenol with carboxymethylated (1,3/1,6)-ß-d-glucan (CM-glucan), a carbohydrate polymer widely used in the food and pharmaceutical industries. The present work was undertaken to elucidate the mechanism behind this stabilizing effect. The supramolecular structural, physico-chemical and morphological features of the CM-glucan/resveratrol complex have been studied under different physical and chemical stimuli by means of spectroscopic techniques, microscopy and physical methods such as UV-Visible spectroscopy (UV-Vis), spectrofluorimetry, Circular Dichroism (CD), Infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Our experimental data indicate that CM-glucan conformational organized architecture in aqueous solution is enhanced in the presence of resveratrol, suggesting that the polyphenol is able to confer a high degree of order to the polymer by a probable cooperative structural organization that results in a long term stabilization for the polyphenol.

20.
J Alzheimers Dis ; 54(1): 307-24, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27567805

ABSTRACT

Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose. In this paper, we demonstrate that a mitochondrial dysfunction occurs in Alzheimer's transgenic mice TgCRND8, in SH-SY5Y treated with amyloid-beta and in 7PA2 cells. Moreover, PARP-1 activation contributes to the functional energetic decline affecting cytochrome oxidase IV protein levels, oxygen consumption rates, and membrane potential, resulting in cellular bioenergetic deficit. We also observed, for the first time, an increase of pyruvate kinase 2 expression, suggesting a modulation of the glycolytic pathway by PARP-1. PARP-1 inhibitors are able to restore both mitochondrial impairment and pyruvate kinase 2 expression. The overall data here presented indicate a pivotal role for this enzyme in the bioenergetic network of neuronal cells and open new perspectives for investigating molecular mechanisms underlying energy charge decline in Alzheimer's disease. In this scenario, PARP-1 inhibitors might represent a novel therapeutic intervention to rescue cellular energetic metabolism.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neuroprotective Agents/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , CHO Cells , Cell Line, Tumor , Citrate (si)-Synthase/metabolism , Cricetulus , Disease Models, Animal , Electron Transport Complex IV/metabolism , Entorhinal Cortex/drug effects , Entorhinal Cortex/metabolism , Enzyme Inhibitors/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Lactic Acid/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , NAD/metabolism , Peptide Fragments/toxicity , Poly (ADP-Ribose) Polymerase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...