Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000717

ABSTRACT

Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.

2.
Small ; : e2400876, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429239

ABSTRACT

Lithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on Li1.26 Ni0.15 Mn0.61 O2 as a lithium-rich, cobalt-free layered oxide. Al doping suppresses voltage fade and improves the capacity retention from 46% for Li1.26 Ni0.15 Mn0.61 O2 to 67% for Li1.26 Ni0.15 Mn0.56 Al0.05 O2 after 250 cycles at 0.2 C. The undoped material has a monoclinic Li2 MnO3 -type structure with spinel on the particle edges. In contrast, Al-doped materials (Li1.26 Ni0.15 Mn0.61-x Alx O2 ) consist of a more stable rhombohedral phase at the particle edges, with a monoclinic phase core. For this core-shell structure, the formation of Mn3+ is suppressed along with the material's decomposition to a disordered spinel, and the amount of the rhombohedral phase content increases during galvanostatic cycling. Whereas previous studies generally provided qualitative insight into the degradation mechanisms during electrochemical cycling, this work provides quantitative information on the stabilizing effect of the rhombohedral shell in the doped sample. As such, this study provides fundamental insight into the mechanisms through which Al doping increases the electrochemical stability of lithium-rich cobalt-free layered oxides.

3.
RSC Adv ; 13(47): 33146-33158, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37954421

ABSTRACT

LNMO (LiNi0.5Mn1.5O4-δ) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 µm LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in Rct values as high as 1247 Ω (after 1000 cycles) for bare LNMO, against 216 Ω for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.

4.
Polymers (Basel) ; 15(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904422

ABSTRACT

Biobased and biodegradable polyhydroxyalkanoates (PHAs) are currently gaining momentum. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) polymer has a useful processing window for extrusion and injection molding of packaging, agricultural and fishery applications with required flexibility. Processing PHBHHx into fibers using electrospinning or centrifugal fiber spinning (CFS) can further broaden the application area, although CFS remains rather unexplored. In this study, PHBHHx fibers are centrifugally spun from 4-12 wt.% polymer/chloroform solutions. Beads and beads-on-a-string (BOAS) fibrous structures with an average diameter (ϕav) between 0.5 and 1.6 µm form at 4-8 wt.% polymer concentrations, while more continuous fibers (ϕav = 3.6-4.6 µm) with few beads form at 10-12 wt.% polymer concentrations. This change is correlated with increased solution viscosity and enhanced mechanical properties of the fiber mats (strength, stiffness and elongation values range between 1.2-9.4 MPa, 11-93 MPa, and 102-188%, respectively), though the crystallinity degree of the fibers remains constant (33.0-34.3%). In addition, PHBHHx fibers are shown to anneal at 160 °C in a hot press into 10-20 µm compact top-layers on PHBHHx film substrates. We conclude that CFS is a promising novel processing technique for the production of PHBHHx fibers with tunable morphology and properties. Subsequent thermal post-processing as a barrier or active substrate top-layer offers new application potential.

5.
ACS Appl Mater Interfaces ; 14(24): 27922-27931, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35687012

ABSTRACT

Volatile A-cation halide (AX) additives such as formamidinium chloride and methylammonium chloride have been widely employed for high-efficiency perovskite solar cells (PSCs). However, it remains unstudied how they influence the perovskite film stoichiometry and the solar cell performance and operational stability. Hereby, our work shows that over annealing of formamidinium chloride-containing perovskite films leads to a Pb-rich surface, resulting in a high initial efficiency, which however decays during maximum power point tracking (MPPT). On the contrary, perovskite films obtained by a shorter annealing time at the same temperature provide good stability during MPPT but a lower initial efficiency. Thus, we deduce that an optimal annealing is vital for both high efficiency and operational stability, which is then confirmed in the case where methylammonium chloride additive is used. With optimized perovskite annealing conditions, we demonstrate efficient and stable p-i-n PSCs that show a best power conversion efficiency of 20.7% and remain 90% of the initial performance after a 200 h MPPT at 60 °C under simulated 1 sun illumination with high UV content. Our work presents a comprehensive understanding on how volatile AX impacts perovskite film stoichiometry and its correlation to the device performance and operational stability, providing a new guideline for fabricating high-efficiency and operationally stable PSCs.

6.
iScience ; 24(12): 103496, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34934918

ABSTRACT

Driven by expanding interest in battery storage solutions and the success story of lithium-ion batteries, the research for the discovery and optimization of new battery materials and concepts is at peak. The generation of experimental (dis)charge data using coin cells is fast and feasible and proves to be a favorite practice in the battery research labs. The quantitative interpretation of the data, however, is not trivial and decelerates the process of screening and optimization of electrode materials and recipes. Here, we introduce the concept of polarographic map and demonstrate how it can be leveraged to quantify the contribution of different non-equilibrium phenomena to the performance limitation and total polarization of a lithium-ion cell. We showcase the accuracy and diagnostic power of this approach by preparing and analyzing the electrochemical performance of 54 sets of LiNixMnyCo1-x-yO2 electrodes with different formulations and designs discharged in a range of 0.2C-5C.

7.
Polymers (Basel) ; 12(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291806

ABSTRACT

This paper presents the formulation, inkjet printing, and vacuum forming of a conductive and stretchable polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), ink on a stretchable and transparent thermoplastic polyurethane (TPU) substrate. The formulation of the conductive and stretchable ink is achieved by combining PEDOT:PSS with additional solvents, to achieve the right inkjet properties for drop-on-demand (DoD) inkjet printing. A conductive pattern can be printed from the 21 µm orifice on a flexible and stretchable TPU substrate, with a linewidth down to 44 µm. The properties of the printed pattern, in terms of sheet resistance, morphology, transparency, impact of weather conditions, and stretching are investigated and show sheet resistances up to 45 Ohm/sq and transparencies as high as 95%, which is comparable to indium tin oxide (ITO). Moreover, in contrast to ITO, one-time stretching up to 40% can be achieved, increasing the sheet resistance up to 214 Ohm/sq only, showing the great potential of this ink for one-time stretching. Finally, as a proof of this one-time stretching, the printed samples are vacuum formed around a 3D object, still showing sufficient conductivity to be applied as a capacitive touch sensor.

8.
Nanomaterials (Basel) ; 10(5)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392730

ABSTRACT

The field of printed electronics is rapidly evolving, producing low cost applications with enhanced performances with transparent, stretchable properties and higher reliability. Due to the versatility of printed electronics, industry can consider the implementation of electronics in a way which was never possible before. However, a post-processing step to achieve conductive structures-known as sintering-limits the production ease and speed of printed electronics. This study addresses the issues related to fast sintering without scarifying important properties such as conductivity and surface roughness. A drop-on-demand inkjet printer is employed to deposit silver nanoparticle-based inks. The post-processing time of these inks is reduced by replacing the conventional oven sintering procedure with the state-of-the-art method, named near-infrared sintering. By doing so, the post-processing time shortens from 30-60 min to 6-8 s. Furthermore, the maximum substrate temperature during sintering is reduced from 200 °C to 120 °C. Based on the results of this study, one can conclude that near-infrared sintering is a ready-to-industrialize post-processing method for the production of printed electronics, capable of sintering inks at high speed, low temperature and with low complexity. Furthermore, it becomes clear that ink optimization plays an important role in processing inkjet printable inks, especially after being near-infrared sintered.

9.
Front Microbiol ; 11: 598507, 2020.
Article in English | MEDLINE | ID: mdl-33519737

ABSTRACT

The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg-1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l-1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.

10.
3 Biotech ; 9(3): 74, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30800585

ABSTRACT

We report here on a high-quality draft genome sequence of Ochrobactrum haematophilum strain P6BS-III (DSM 106071), a Gram negative, non-sporulating bacterium isolated from a pastureland (Buenos Aires province, Argentina) which had been chronically exposed to the herbicide glyphosate. The genome of 5.25 Mb with a DNA G+C content of 56.63% size was estimated to contain 5,291 protein coding genes and 57 RNA genes. Genome analysis revealed the presence of the phn operon, which is involved in the phosphonate degradation pathway, and a class II 5-enolpyruvylshikimate-3-phosphate synthase (EPSP) that confers tolerance to glyphosate. Genes related to plant growth promotion traits are also present, and include genes for phosphorus metabolism, calcium phosphate and phytate solubilization, siderophore production, organic acid biosynthesis and indole acetic acid (IAA) production.

11.
Chem Commun (Camb) ; 55(17): 2481-2484, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30734783

ABSTRACT

This study broadens the family of 2D layered perovskites by demonstrating that it is possible to self-assemble organic charge-transfer complexes in their organic layer. Organic charge-transfer complexes, formed by combining charge-donating and charge-accepting molecules, are a diverse class of materials that can possess exceptional optical and electronic properties.

12.
Chemosphere ; 217: 724-731, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30448752

ABSTRACT

The removal of Ibuprofen was investigated by activated carbon impregnated with TiO2. Emphasis was given on the effect of different parameters, such as composite type, initial Ibuprofen concentration (5-25 mg/L), temperature (22-28 °C) and pH (acidic and alkaline solution). The experiment was carried out in a self-made tubular flow reactor, with one 15 W monochromatic UV lamp (254 nm). The composite AC90T10 gives the highest removal degree of 92% of Ibuprofen solution under UV light within 4 h, due to synergy of adsorption and photodegradation. It was found that weight ratio of composite/Ibuprofen has limited effect on the removal degree within the concentration range (5-25 mg/L), but reaction time under UV light (4 h) and pH (acidic solution) are very important. The kinetic experimental data obtained at pH 4.3 at 25 °C on different composites were fitted to pseudo-first, pseudo-second and Elovich models, obtaining a high accuracy based on R2 values. From the results, composites of granular activated carbon and TiO2 can enhance removal of Ibuprofen effectively, making recycle process much easier and less costly, which can be a promising method in future water treatment.


Subject(s)
Adsorption , Ibuprofen/isolation & purification , Photolysis , Catalysis , Charcoal , Ibuprofen/chemistry , Kinetics , Titanium , Water Purification/methods
13.
Biosens Bioelectron ; 118: 58-65, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30056301

ABSTRACT

Molecularly imprinted polymers (MIPs) can selectively bind target molecules and can therefore be advantageously used as a low-cost and robust alternative to replace fragile and expensive natural receptors. Yet, one major challenge in using MIPs for sensor development is the lack of simple and cost-effective techniques that allow firm fixation as well as controllable and consistent receptor material distribution on the sensor substrate. In this work, a convenient method is presented wherein microfluidic systems in conjunction with in situ photo-polymerization on functionalized diamond substrates are used. This novel strategy is simple, efficient, low-cost and less time consuming. Moreover, the approach ensures a tunable and consistent MIP material amount and distribution between different sensor substrates and thus a controllable active sensing surface. The obtained patterned MIP structures are successfully tested as a selective sensor platform to detect physiological concentrations of the hormone disruptor testosterone in buffer, urine and saliva using electrochemical impedance spectroscopy. The highest added testosterone concentration (500 nM) in buffer resulted in an impedance signal of 10.03 ±â€¯0.19% and the lowest concentration (0.5 nM) led to a measurable signal of 1.8 ±â€¯0.15% for the MIPs. With a detection limit of 0.5 nM, the MIP signals exhibited good linearity between a 0.5 nM and 20 nM concentration range. Apart from the excellent and selective recognition offered by these MIP structures, they are also stable during and after the dynamic sensor measurements. Additionally, the MIPs can be easily regenerated by a simple washing procedure and are successfully tested for their reusability.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Electrochemical Techniques , Spectrum Analysis , Testosterone/analysis , Diamond , Electric Impedance , Humans , Molecular Imprinting , Polymers , Saliva/chemistry , Urine/chemistry
14.
Macromol Rapid Commun ; 39(14): e1800086, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29682847

ABSTRACT

Push-pull-type conjugated polymers applied in organic electronics do not always contain a perfect alternation of donor and acceptor building blocks. Misscouplings can occur, which have a noticeable effect on the device performance. In this work, the influence of homocoupling on the optoelectronic properties and photovoltaic performance of PDTSQxff polymers is investigated, with a specific focus on the quinoxaline acceptor moieties. A homocoupled biquinoxaline segment is intentionally inserted in specific ratios during the polymerization. These homocoupled units cause a gradually blue-shifted absorption, while the highest occupied molecular orbital energy levels decrease only significantly upon the presence of 75-100% of homocouplings. Density functional theory calculations show that the homocoupled acceptor unit generates a twist in the polymer backbone, which leads to a decreased conjugation length and a reduced aggregation tendency. The virtually defect-free PDTSQxff affords a solar cell efficiency of 5.4%, which only decreases substantially upon incorporating a homocoupling degree over 50%.


Subject(s)
Polymers/chemistry , Quinine/chemistry , Solar Energy , Polymerization , Polymers/chemical synthesis
15.
Front Microbiol ; 9: 3044, 2018.
Article in English | MEDLINE | ID: mdl-30619135

ABSTRACT

Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a ~50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria.

16.
Nanomedicine ; 13(5): 1663-1671, 2017 07.
Article in English | MEDLINE | ID: mdl-28366819

ABSTRACT

A major conceptual breakthrough in cell signaling has been the finding of EV as new biomarker shuttles in body fluids. Now, one of the major challenges in using these nanometer-sized biological entities as diagnostic marker is the development of translational methodologies to profile them. SPR offers a promising label-free and real time platform with a high potential for biomarker detection. Therefore, we aimed to develop a uniform SPR methodology to detect specific surface markers on EV derived from patient with CHD. EVs having an approximate size range between 30 and 100 nm (~48.5%) and 100-300 nm (~51.5%) were successfully isolated. The biomarker profile of EV was verified using immunogold labeling, ELISA and SPR. Using SPR, we demonstrated an increased binding of EV derived from patients with CHD to anti-ICAM-1 antibodies as compared to EV from healthy donors. Our current findings open up novel opportunities for in-depth and label-free investigation of EV.


Subject(s)
Biomarkers , Endothelial Cells , Extracellular Vesicles , Surface Plasmon Resonance , Coronary Disease , Humans , Inflammation , Nanotechnology/methods
17.
Sci Rep ; 6: 29444, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404130

ABSTRACT

Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/µm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/µm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

18.
Nano Lett ; 16(5): 3173-8, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27104759

ABSTRACT

Although adverse health effects of carbon black (CB) exposure are generally accepted, a direct, label-free approach for detecting CB particles in fluids and at the cellular level is still lacking. Here, we report nonincandescence related white-light (WL) generation by dry and suspended carbon black particles under illumination with femtosecond (fs) pulsed near-infrared light as a powerful tool for the detection of these carbonaceous materials. This observation is done for four different CB species with diameters ranging from 13 to 500 nm, suggesting this WL emission under fs near-infrared illumination is a general property of CB particles. As the emitted radiation spreads over the whole visible spectrum, detection is straightforward and flexible. The unique property of the described WL emission allows optical detection and unequivocal localization of CB particles in fluids and in cellular environments while simultaneously colocalizing different cellular components using various specific fluorophores as shown here using human lung fibroblasts. The experiments are performed on a typical multiphoton laser-scanning microscopy platform, widely available in research laboratories.

19.
Materials (Basel) ; 9(3)2016 Mar 09.
Article in English | MEDLINE | ID: mdl-28773308

ABSTRACT

The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT) or thiazolo[5,4-d]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs' lifetime.

20.
Chem Commun (Camb) ; 51(87): 15858-15861, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26377628

ABSTRACT

Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.


Subject(s)
Drug Delivery Systems , Isocyanates/chemistry , Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Emulsions , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Particle Size , Potassium Chloride/chemistry , Toluene 2,4-Diisocyanate/chemistry , Urethane/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...