Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 148: 112753, 2022 04.
Article in English | MEDLINE | ID: mdl-35272139

ABSTRACT

COVID-19 is a lethal disease caused by the pandemic SARS-CoV-2, which continues to be a public health threat. COVID-19 is principally a respiratory disease and is often associated with sputum retention and cytokine storm, for which there are limited therapeutic options. In this regard, we evaluated the use of BromAc®, a combination of Bromelain and Acetylcysteine (NAC). Both drugs present mucolytic effect and have been studied to treat COVID-19. Therefore, we sought to examine the mucolytic and anti-inflammatory effect of BromAc® in tracheal aspirate samples from critically ill COVID-19 patients requiring mechanical ventilation. METHOD: Tracheal aspirate samples from COVID-19 patients were collected following next of kin consent and mucolysis, rheometry and cytokine analysis using Luminex kit was performed. RESULTS: BromAc® displayed a robust mucolytic effect in a dose dependent manner on COVID-19 sputum ex vivo. BromAc® showed anti-inflammatory activity, reducing the action of cytokine storm, chemokines including MIP-1alpha, CXCL8, MIP-1b, MCP-1 and IP-10, and regulatory cytokines IL-5, IL-10, IL-13 IL-1Ra and total reduction for IL-9 compared to NAC alone and control. BromAc® acted on IL-6, demonstrating a reduction in G-CSF and VEGF-D at concentrations of 125 and 250 µg. CONCLUSION: These results indicate robust mucolytic and anti-inflammatory effect of BromAc® ex vivo in tracheal aspirates from critically ill COVID-19 patients, indicating its potential to be further assessed as pharmacological treatment for COVID-19.


Subject(s)
Acetylcysteine/pharmacology , Bromelains/pharmacology , COVID-19/pathology , Chemokines/drug effects , Cytokines/drug effects , Sputum/cytology , Acetylcysteine/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Bromelains/administration & dosage , Cytokine Release Syndrome/pathology , Dose-Response Relationship, Drug , Down-Regulation , Drug Combinations , Expectorants/pharmacology , Female , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Respiration, Artificial , Rheology , SARS-CoV-2 , Trachea/pathology , Young Adult
2.
Asian Pac J Trop Biomed ; 4(5): 367-73, 2014 May.
Article in English | MEDLINE | ID: mdl-25182721

ABSTRACT

OBJECTIVE: To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. METHODS: BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by (45)Ca(2+) influx evaluation. RESULTS: The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance; however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca(2+) influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. CONCLUSIONS: The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca(2+) influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants.

3.
Food Chem Toxicol ; 50(3-4): 1001-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22222932

ABSTRACT

Lantana macrophylla Schauer (Verbenaceae) a medicinal plant used to treat menstrual and respiratory disorders was investigated. The ethanolic extract from leaves was subjected to phytochemical and biological analysis. BeWo and JEG-3 cells were used to evaluate human chorionic gonadotropin hormone (hCG) production, syncytial formation, Ca2+ uptake and Ca2+ handling protein expression. The cAMP production and the mitogen-activated protein kinases (MAPKs) phosphorylation were also investigated. Phytochemical analysis yield three triterpenes: oleanolic, ursolic and latonolic acid. Viability assay showed no significant cytotoxic effect. A significant decrease in hCG production but not a disturbance on BeWo cell fusion were observed. The cAMP pathway was not affected by L. macrophylla extract alone; although the cAMP production inducted by forskolin was diminished. Both ERK1/2 and p38 MAPKs pathways were activated. Increased intracellular Ca2+ concentration ([Ca2+]i) was observed after 24 h treatment in a time and dose dependent manner; however only L. macrophylla at 10 µg/mL induced increased [Ca2+]i after 10 min treatment. CaBP28K and PMCA1/4 were modulated at protein and mRNA levels, respectively. This study showed for the first time the effect of triterpenoids from L. macrophylla leaves on trophoblasts-like cells and indicates a potential toxic effect of this plant in the placental development and fetal growth.


Subject(s)
Calcium/metabolism , Lantana/chemistry , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Trophoblasts/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Base Sequence , Cell Line , Chorionic Gonadotropin/biosynthesis , DNA Primers , Enzyme Activation , Ethanol/chemistry , Humans , Phosphorylation , Real-Time Polymerase Chain Reaction , Signal Transduction , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...