Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Med Int Open ; 1(4): E119-E127, 2017 Jul.
Article in English | MEDLINE | ID: mdl-30539096

ABSTRACT

The equipment for evaluating the propulsion of a wheelchair is very complex and expensive. To validate a new dynamometer prototype for assessing the propulsion capacity of wheelchairs, 21 healthy subjects (age: 20.9±2.4 yr; weight: 68.9±7.9 kg; height: 174.0±7.1 cm; BMI: 22.7±2.5 kg·m -2 ) who do not normally require wheelchairs performed a sprint protocol for 20 s after a 1-min warm-up. The power and rotation data acquired by the prototype (both right and left sides) were compared with those of a reference system via high-speed videography (240 fps). The results showed high levels of accordance (95% CI), excellent values for the intraclass correlation coefficient (ICC: .99; P <0.00), no significant differences in the rotation ( P =0.91) and power ( P =0.94) between the methods. The proposed equipment met the validation criteria and thus can be applied as a new tool for assessing wheelchair propulsion.

2.
Open Access J Sports Med ; 4: 19-25, 2013.
Article in English | MEDLINE | ID: mdl-24379705

ABSTRACT

OBJECTIVE: To validate an equation to estimate the maximal oxygen consumption (VO2max) of nonexpert adult swimmers. METHODS: Participants were 22 nonexpert swimmers, male, aged between 18 and 30 years (age: 23.1 ± 3:59 years; body mass: 73.6 ± 7:39 kg; height 176.6 ± 5.53 cm; and body fat percentage: 15.9% ± 4.39%), divided into two subgroups: G1 - eleven swimmers for the VO2max oximetry and modeling of the equation; and G2 - eleven swimmers for application of the equation modeled on G1 and verification of their validation. The test used was the adapted Progressive Swim Test, in which there occurs an increase in the intensity of the swim every two laps. For normality and homogeneity of data, Shapiro-Wilk and Levene tests were used, the descriptive values of the average and standard deviation. The statistical steps were: (1) reliability of the Progressive Swim Test - through the paired t-test, intraclass correlation coefficient (ICC), and the Pearson linear correlation (R) relative to the reproducibility, the coefficient of variation (CV), and standard error measurement (SEM) for the absolute reproducibility; (2) in the model equation to estimate VO2max, a relative VO2 was established, and a stepwise multiple regression model was performed with G1 - so the variables used were analysis of variance regression (AR), coefficient of determination (R(2)), adjusted coefficient of determination (R(2)a), standard error of estimate (SEE), and Durbin-Watson (DW); (3) validation of the equation - the results were presented in graphs, where direct (G1) and estimated (G2) VO2max were compared using independent t-test, linear regression (stressing the correlation between groups), and Bland-Altman (the bias agreement of the results). All considered a statistical significance level of P < 0.05. RESULTS: On the trustworthiness of the Progressive Swim Test adapted presented as high as observed (R and ICC > 0.80, CV < 10%, and SEM < 2%). In the equation model, VO2max has been considered the third model as recommended due to the values found (AR < 0.01, R = 0795, R(2) = 0633; R(2)a = 0.624, SEE = 7.21, DW = 2.06). Upon validation of the equation, no significant differences occurred between G1 and G2 (P > 0.01), linear regression stressed a correlation between the groups (R > 0.80, P < 0.01), and Bland-Altman plotting of the results was within the correlation limits of 1.96 (95% confidence interval). CONCLUSION: The estimating equation for VO2max for nonexpert swimmers is valid for its application through the Progressive Swim Test, providing to contribute in prescribing the swimming lessons as a method of evaluating the physical condition of its practitioners.

3.
Open Access J Sports Med ; 3: 115-20, 2012.
Article in English | MEDLINE | ID: mdl-24198594

ABSTRACT

BACKGROUND: Improvement in swimming performance involves the dynamic alignment of the body in liquid, technical skill, anthropometric characteristics of athletes, and the ability to develop propulsive force. The aim of this study was to assess the relationships between the propulsive force during swimming and arm muscle area (AMA) and propose an equation to estimate the propulsive force in young swimmers by measuring their AMA. METHODS: Study participants were 28 male swimmers (14 ± 1.28 years) registered in the Brazilian Federation of Aquatic Sports. Their AMA was estimated by anthropometry and skinfold measurement, and the propulsive force of their arm (PFA) was assessed by the tied swimming test. The Durbin-Watson (DW) test was used to verify residual independence between variables (PFA and AMA). A Pearson correlation investigated potential associations between the variables and then a linear regression analysis was established. The Bland-Altman method was used to compare the values found between PFA and propulsive force-estimated (PFE). A paired Student's t-test was used to analyze the difference in PFE with and without the constant and the coefficient of variation (CV) to estimate the magnitude of a real change between these forces. RESULTS: There was a significant positive correlation between the variables AMA and PFA (r = 0.68, P < 0.001). The linear regression showed a value of R(2) = 0.470. There were no significant differences when comparing PFA and PFE (95% confidence interval: -8.903 to 9.560 kgf). To verify if there was a correlation between these variables, a new linear regression analysis found a value of R(2) = 0.668, which confirms an equivalence between PFA and PFE, as CV showed 4% of magnitude. CONCLUSION: The results of this study suggest the existence of a relationship between levels of PFA and muscle mass, however, this relationship becomes more evident the longer the AMA, which allows the development of an equation to estimate the propulsive force of young swimmers.

SELECTION OF CITATIONS
SEARCH DETAIL
...