Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
2.
Comp Cytogenet ; 15(4): 429-445, 2021.
Article in English | MEDLINE | ID: mdl-34963795

ABSTRACT

Carangidae are an important and widespreaded family of pelagic predatory fishes that inhabit reef regions or open ocean areas, some species occupying a vast circumglobal distribution. Cytogenetic comparisons among representatives of its different tribes help to understand the process of karyotype divergence in marine ecosystems due to the variable migratory ability of species. In this sense, conventional cytogenetic investigations (Giemsa staining, Ag-NORs, and C-banding), GC base-specific fluorochrome staining and FISH mapping of ribosomal DNAs were performed. Four species, Elagatisbipinnulata (Quoy et Gaimard, 1825) and Seriolarivoliana (Valenciennes, 1883) (Naucratini), with circumtropical distributions, Gnathanodonspeciosus (Forsskål, 1775) (Carangini), widely distributed in the tropical and subtropical waters of the Indian and Pacific oceans, and Trachinotuscarolinus (Linnaeus, 1766) (Trachinotini), distributed along the western Atlantic Ocean, were analyzed, thus encompassing representatives of three out its four tribes. All species have diploid chromosome number 2n = 48, with karyotypes composed mainly by acrocentric chromosomes (NF = 50-56). The 18S rDNA/Ag-NORs/GC+ and 5S rDNA loci were located on chromosomes likely homeologs. Karyotypes showed a pattern considered basal for the family or with small variations in their structures, apparently due to pericentric inversions. The migratory capacity of large pelagic swimmers, in large distribution areas, likely restricts the fixation of chromosome changes in Carangidae responsible for a low level of karyotype diversification.

3.
Front Genet ; 12: 760244, 2021.
Article in English | MEDLINE | ID: mdl-34777477

ABSTRACT

Fishes of the genus Acanthurus (Acanthuridae) are strongly related to reef environments, in a broad biogeographic context worldwide. Although their biological aspects are well known, cytogenetic information related to this genus remains incipient. In this study, Acanthurus species from populations inhabiting coastal regions of the Southwest Atlantic (SWA), South Atlantic oceanic islands (Fernando de Noronha Archipelago and Trindade Island), Greater Caribbean (GC), and Indo-Pacific Ocean (the center of the origin of the group) were analyzed to investigate their evolutionary differentiation. For this purpose, we employed conventional cytogenetic procedures and fluorescence in situ hybridization of 18S rDNA, 5S rDNA, and H3 and H2B-H2A histone sequences. The Atlantic species (A. coeruleus, A. chirurgus, and A. bahianus) did not show variations among them, despite their vast continental and insular distribution. In contrast, A. coeruleus from SWA and GC diverged from each other in the number of 18S rDNA sites, a condition likely associated with the barrier created by the outflows of the Amazonas/Orinoco rivers. The geminate species A. tractus had a cytogenetic profile similar to that of A. bahianus. However, the chromosomal macrostructures and the distribution of rDNA and hisDNA sequences revealed moderate to higher rates of diversification when Acanthurus species from recently colonized areas (Atlantic Ocean) were compared to A. triostegus, a representative species from the Indian Ocean. Our cytogenetic data covered all Acanthurus species from the Western Atlantic, tracked phylogenetic diversification throughout the dispersive process of the genus, and highlighted the probable diversifying role of ocean barriers in this process.

4.
Mar Life Sci Technol ; 3(3): 293-302, 2021 Aug.
Article in English | MEDLINE | ID: mdl-37073290

ABSTRACT

The order Gobiiformes is made up of more than 2200 species, representing one of the most diverse groups among teleost fishes. The biological causes for the tachytelic karyotype evolution of the gobies have not yet been fully studied. Here we expanded cytogenetic data for the Eleotridae family, analyzing the neotropical species Dormitator maculatus, Eleotris pisonis, Erotelis smaragdus, and Guavina guavina. In addition, a meta-analytical approach was followed for elucidating the karyotype diversification versus biological aspects (habitat and egg type) of the Gobiiformes. The species E. smaragdus and E. pisonis present 2n = 46 acrocentric chromosomes (NF = 46), D. maculatus 2n = 46 (36sm + 4st + 6a; NF = 86), and G. guavina, the most divergent karyotype, with 2n = 52 acrocentric chromosomes (NF = 52). Besides numeric and structural diversification in the karyotypes, the mapping of rDNAs and microsatellites also showed noticeable numerical and positional variation, supporting the high chromosomal evolutionary dynamism of these species. In Gobiiformes, karyotype patterns which are more divergent from the basal karyotype (2n = 46a) are associated with characteristics less effective to dispersion, such as the benthic habit. These adaptive characteristics, connected with the organization of the repetitive DNA content in the chromosomes, likely play a synergistic role in the remarkable karyotype diversification of this group.

5.
Neotrop. ichthyol ; 19(2): e210007, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1279475

ABSTRACT

Some pelagic and usually large sized fishes are preferential targets for sport and commercial fishing. Despite their economic importance, cytogenetic data on their evolutionary processes and management are very deficient, especially due to logistical difficulties. Here, information for two of such charismatic species, the tarpon, Megalops atlanticus (Elopiformes: Megalopidae), and the sailfish, Istiophorus platypterus (Istiophoriformes: Istiophoridae), both with a wide Atlantic distribution, were provided. Cytogenetic data were obtained using conventional methods (Giemsa staining, Ag-NORs technique, and C-banding), base-specific fluorochrome staining and fluorescence in situ hybridization (FISH) with rDNA probes. Megalops atlanticus has 2n = 50 chromosomes, all acrocentric ones (NF = 50), while Istiophorus platypterus has 2n = 48 chromosomes, 2m + 2st + 44a (NF = 52). Megalops atlanticus populations from the South Atlantic and Caribbean share identical karyotypic patterns, likely associated with gene flow between them. In turn, I. platypterus presents karyotype similarities with phylogenetically close groups, such as Carangidae. The chromosomal characteristics of these species highlight their independent evolutionary paths. Additionally, the current data contribute to knowledge of new aspects of pelagic fish fauna and will support further comparative studies with congeneric species, clarifying evolutionary karyotype trends of these fish groups.(AU)


Alguns peixes pelágicos de grande porte são alvos preferenciais para a pesca esportiva e comercial. Apesar de sua importância econômica, os dados citogenéticos sobre seus processos evolutivos e de manejo são muito deficientes, principalmente devido às dificuldades logísticas. Aqui são apresentadas informações cromossômicas de duas espécies carismáticas, o tarpão, Megalops atlanticus (Elopiformes: Megalopidae), e o agulhão-vela, Istiophorus platypterus (Istiophoriformes: Istiophoridae), ambos com ampla distribuição no oceano Atlântico. Os dados citogenéticos foram obtidos usando métodos convencionais (coloração em Giemsa, técnica de Ag-NORs e bandamento C), coloração com fluorocromos específicos e hibridização fluorescente in situ (FISH) com sondas DNAr. Megalops atlanticus possui 2n = 50 cromossomos, todos acrocêntricos (NF = 50), enquanto Istiophorus platypterus possui 2n = 48 cromossomos, 2m + 2st + 44a (NF = 52). Populações de M. atlanticus do Atlântico Sul e Caribe compartilham padrões cariotípicos idênticos, provavelmente associados ao fluxo gênico entre regiões. Por sua vez, I. platypterus apresenta semelhanças cariotípicas micro e macroestruturais com grupos filogeneticamente próximos, como Carangidae. As características cromossômicas destas espécies destacam seus caminhos evolutivos independentes. Adicionalmente, os dados apresentados contribuem com novos aspectos da fauna pelágica e apoiarão futuros estudos comparativos com espécies congenéricas, esclarecendo as tendências evolutivas do cariótipo destes grupos de peixes.(AU)


Subject(s)
Animals , DNA, Ribosomal , Cytogenetics , Gene Flow , Fisheries , Fishes/genetics
6.
Comp Cytogenet ; 10(4): 555-570, 2016.
Article in English | MEDLINE | ID: mdl-28123678

ABSTRACT

Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae.

7.
ScientificWorldJournal ; 2015: 365787, 2015.
Article in English | MEDLINE | ID: mdl-26345638

ABSTRACT

Fish constitute a paraphyletic and profusely diversified group that has historically puzzled ichthyologists. Hard efforts are necessary to better understand this group, due to its extensive diversity. New species are often identified and it leads to questions about their phylogenetic aspects. Cytogenetics is becoming an important biodiversity-detection tool also used to measure biodiversity evolutionary aspects. Molecular cytogenetics by fluorescence in situ hybridization (FISH) allowed integrating quantitative and qualitative data from DNA sequences and their physical location in chromosomes and genomes. Although there is no intention on presenting a broader review, the current study presents some evidences on the need of integrating molecular cytogenetic data to other evolutionary biology tools to more precisely infer cryptic species detection, population structuring in marine environments, intra- and interspecific karyoevolutionary aspects of freshwater groups, evolutionary dynamics of marine fish chromosomes, and the origin and differentiation of sexual and B chromosomes. The new cytogenetic field, called cytogenomics, is spreading due to its capacity to give resolute answers to countless questions that cannot be answered by traditional methodologies. Indeed, the association between chromosomal markers and DNA sequencing as well as between biological diversity analysis methodologies and phylogenetics triggers the will to search for answers about fish evolutionary, taxonomic, and structural features.


Subject(s)
Biodiversity , Biological Evolution , Cytogenetics , Fishes/genetics , Animals , Chromosomes , Cytogenetics/methods , Female , Fishes/classification , Genetics, Population , Karyotype , Male
8.
Biomed Res Int ; 2014: 254698, 2014.
Article in English | MEDLINE | ID: mdl-25386558

ABSTRACT

Connectivity levels among Brazilian reef fish fauna populations have attracted growing interest, mainly between mainland shores and oceanic islands. The Pomacentridae, whose phylogeographic patterns are largely unknown in the Atlantic, are a family of dominant fish in reef regions. We present data on the variability and population structure of damselfish Chromis multilineata in different areas along the northeast coast of Brazil and in the waters around the oceanic islands of Fernando de Noronha (FNA) and Saint Peter and Saint Paul Archipelago (SPSPA) through analysis of the HVR1 mtDNA sequence of the control region. The remote SPSPA exhibits the highest level of genetic divergence among populations. Conventional and molecular cytogenetic analysis showed similar karyotype patterns (2n=48 acrocentrics) between these insular areas. Our estimates reveal three genetically different population groups of C. multilineata on the Brazilian coast. The level of genetic structure is higher than previous data suggested, indicating complex panel of interactions between the oceanic island and coastal populations of Brazil.


Subject(s)
DNA, Mitochondrial/genetics , Genetics, Population , Perciformes/genetics , Population Dynamics , Animals , Brazil , Karyotype , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...