Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 159: 46-55, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30577001

ABSTRACT

Osmotin- and thaumatin-like proteins (OLPs and TLPs) have been associated with plant defense responses to different biotic stresses. In the present work, several in silico sequences from OLPs and TLPs were investigated by means of bioinformatics tools aiming to prospect for antimicrobial peptides. The peptide sequences chosen were further synthesized and characterized, and their activities and action mechanisms were assayed against some phytopathogenic fungi, bacteria and yeasts of clinical importance. From this survey approach, four peptide sequences (GDCKATSC, CPRALKVPGGCN, IVGQCPAKLKA, and CAADIVGQCPAKLK) were selected considering some chemical parameters commonly attributed to antimicrobial peptides. Antimicrobial assays showed that these peptides were unable to inhibit mycelial growth of phytopathogenic fungi and they did not affect bacterial cell growth. Nevertheless, significant inhibitory activity was found for CPRALKVPGGCN and CAADIVGQCPAKLK against Candida albicans and Saccharomyces cerevisiae. Fluorescence and scanning electron microscopy assays suggested that CAADIVGQCPAKLK did not damage the overall cell structure, or its activity was negligible on yeast membrane and cell wall integrity. However, it induced the production of reactive oxygen species (ROS) and apoptosis. Molecular docking analysis showed that CAADIVGQCPAKLK had strong affinity to interact with specific plasma membrane receptors of C. albicans and S. cerevisiae, which have been described as promoting the induction of apoptosis. The results indicate that CAADIVGQCPAKLK can be a valuable target for the development of a desired antimicrobial agent against the pathogen C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Apoptosis/drug effects , Candida albicans/drug effects , Peptides/pharmacology , Plant Proteins/chemistry , Plants/chemistry , Receptors, Cell Surface/drug effects , Amino Acid Sequence , Antifungal Agents/chemistry , Candida albicans/growth & development , Candida albicans/metabolism , Cell Membrane/drug effects , Cell Wall/drug effects , Databases, Protein , Drug Discovery , Microbial Sensitivity Tests , Molecular Docking Simulation , Peptides/chemistry , Peptides/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...