Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(7): e04573, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32775731

ABSTRACT

PVDF was prepared by compression molding, and its phase content/structure was assessed by WAXD, DSC, and FTIR-ATR spectroscopy. Next, PVDF samples were aged in bioethanol fuel at 60 °C or annealed in the same temperature by 30 ─ 180 days. Then, the influence of aging/annealing on thermal stability, thermal degradation kinetics, and lifetime of the PVDF was investigated by thermogravimetric analysis (TGA/DTG), as well as the structure was again examined. The crystallinity of ~41% (from WAXD) or ~49% (from DSC) were identified for unaged PVDF, without significant changes after aging or annealing. This PVDF presented not only one phase, but a mixture of α-, ß- and γ-phases, α- and ß-phases with more highlighted vibrational bands. Thermal degradation kinetics was evaluated using the non-isothermal Ozawa-Flynn-Wall method. The activation energy (E a ) of thermal degradation was calculated for conversion levels of α = 5 ─ 50% at constant heating rates (5, 10, 20, and 40 °C min─1), α = 10% was fixed for lifetime estimation. The results indicated that temperature alone does not affect the material, but its combination with bioethanol reduced the onset temperature and E a of primary thermal degradation. Additionally, the material lifetime decreased until about five decades (T f = 25 °C and 90 days of exposition) due to the fluid effect after aging.

2.
J Biomed Opt ; 20(5): 55005, 2015 May.
Article in English | MEDLINE | ID: mdl-25970084

ABSTRACT

The distribution of light intensity of three light-curing units (LCUs) to cure the resin-based composite for dental fillings was analyzed, and a homogeneity index [flat-top factor (FTF)] was calculated. The index is based on the M2 index, which is used for laser beams. An optical spectrum analyzer was used with an optical fiber to produce an x-y power profile of each LCU light guide. The FTF-calculated values were 0.51 for LCU1 and 0.55 for LCU2, which was the best FTF, although it still differed greatly from the perfect FTF = 1, and 0.27 for LCU3, which was the poorest value and even lower than the Gaussian FTF = 0.5. All LCUs presented notably heterogeneous light distribution, which can lead professionals and researchers to produce samples with irregular polymerization and poor mechanical properties.


Subject(s)
Curing Lights, Dental , Light , Lighting/instrumentation , Radiometry/methods , Scattering, Radiation , Semiconductors , Energy Transfer , Equipment Design , Equipment Failure Analysis , Humans , Light-Curing of Dental Adhesives/instrumentation , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...