Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 822: 153614, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35124030

ABSTRACT

Biochar and hydrochar are carbonaceous materials with valuable applications. They can be synthesized from a wide range of organic wastes, including digestate. Digestate is the byproduct of anaerobic digestion (AD), which is performed for bioenergy (biogas) production from organic residues. Through a thermochemical process, such as pyrolysis, gasification, and hydrothermal carbonization - HTC, digestate can be converted into biochar or hydrochar. The addition of either biochar or hydrochar in AD has been reported to improve biochemical reactions and microbial growth, increasing the buffer capacity, and facilitating direct interspecies electrons transfer (DIET), resulting in higher methane (CH4) yields. Both biochar and hydrochar can adsorb undesired compounds present in biogas, such as carbon dioxide (CO2), hydrogen sulfide (H2S), ammonia (NH3), and even siloxanes. However, an integrated understanding of biochar and hydrochar produced from digestate through their return to the AD process, as additives or as adsorbents for biogas purification, is yet to be attained to close the material flow loop in a circular economy model. Therefore, this overview aimed at addressing the integration of biochar and hydrochar production from digestate, their utilization as additives and effects on AD, and their potential to adsorb biogas contaminants. This integration is supported by life cycle assessment (LCA) studies, showing positive results when combining AD and the aforementioned thermochemical processes, although more LCA is still necessary. Techno-economic assessment (TEA) studies of the processes considered are also presented, and despite an expanding market of biochar and hydrochar, further TEA is required to verify the profitability of the proposed integration, given the specificities of each process design. Overall, the synthesis of biochar and hydrochar from digestate can contribute to improving the AD process, establishing a cyclic process that is in agreement with the circular economy concept.


Subject(s)
Biofuels , Charcoal , Anaerobiosis , Charcoal/chemistry , Methane
2.
Bioprocess Biosyst Eng ; 44(1): 161-171, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32862326

ABSTRACT

This study investigated the effect of magnetite nanoparticles (Np-magnetite) added to a pilot-scale sequencing batch reactor (SBR) treating domestic wastewater, to improve aerobic granular sludge (AGS) formation and the effects of granule disintegration. Np-magnetite additions (75 mg L-1) were made during the start-up of the reactor and repeated after 100 and 170 days, when granule disintegration was observed. From the first Np-magnetite addition, SVI5 was reduced from 1315 to 85 mL g-1. The granular biomass was observed on the 56th day, when 57% of the granules presented diameters bigger than 212 µm. The 100-day disintegration episode disturbed the granular biomass, reducing the volatile suspended solids by 51%, increasing the SVI values to above 200 mL g-1. Np-magnetite addition recovered all the granular biomass parameters to the values observed before disintegration. The treatment efficiency was stable during operation of the reactor for nutrients (52.8 ± 23.4% NH4+-N; 54.5 ± 12.2% PO43--P) and carbonaceous organic matter (71.7 ± 12.7% BOD5; 77.5 ± 10.0% CODt). Np-magnetite addition changed the microbial community of the granular sludge, analysed via high-throughput 16S RNA sequencing, and recovered the treatment efficiency previously disturbed by the disintegration processes. These results indicate the potential of Np-magnetite as an agent for sludge aggregation in an aerobic granular reactor.


Subject(s)
Bioreactors , Magnetite Nanoparticles/chemistry , Wastewater/microbiology , Water Purification , Aerobiosis
3.
Bioresour Technol ; 312: 123632, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32531737

ABSTRACT

The influence of wastewater (WW) composition and the bioaggregates types (floccular vs. aerobic granular sludge - AGS) on the content, physical-chemical, hydrogel and rheological properties of Alginate-Like Exopolymers (ALE) was studied. Results showed that ALE are a complex mixture of proteins, humic acids and polysaccharides. Overall, rather similar ALE content and composition was observed for the different types of sludge. Only the AGS fed with acetate and propionate yielded significantly larger amount of ALE (261 ± 33 mg VSALE/g VSsludge, +49%) and of uronic sugars in ALE (254 ± 32 mgglucuronic acid/g VSALE, +62%) than bioaggregates fed with no/very little volatile fatty acids. Mannuronic acids are involved in the cohesion of the hydrogels. ALE hydrogels elasticity changed significantly with the type/origin of the bioaggregates. ALE hydrogels elasticity from AGS was always higher than from flocs when fed with real WW. Hence, different types of sludge impact the properties of the recovered ALE.


Subject(s)
Extracellular Polymeric Substance Matrix , Wastewater , Aerobiosis , Alginates , Bioreactors , Sewage , Waste Disposal, Fluid
4.
Appl Microbiol Biotechnol ; 104(13): 5697-5709, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32415318

ABSTRACT

Aerobic granular sludge (AGS) is a microbial biofilm self-aggregation, which is effective for nutrient and pollutant removal, through the development of dense microbial layers bound together with extracellular polymeric substances (EPSs). However, long start-up times and granule disintegration are still challenges ahead. An array of external additives, including ion chelating agents, sludge-based enhancers, and magnetic influence have been tested to overcome these barriers. The application of such additives may promote enhanced EPS production, neutralization of charges on the bacterial surface, acts as a core-induced agent, or as a bridge to connect EPSs and cell surfaces. Although additives may improve the granule formation without reducing treatment efficiencies, there are still environmental concerns due to the fate and toxicity of discharged excess sludge. This mini-review identifies an array of external additives and their mechanisms to improve granulation properties, and proposes discussion about the technical and economic viability of these additives. KEY POINTS: • Additives reduce granulation time and repair granule disintegration. • Biopolymer-based additives fulfill technical and environmental requirements. • Sludge-based additives are cheap and in line with the resource recovery concept. • The need for environmental-friendly additives for aerobic granular sludge process. • External additives affect granular biomass size distribution.


Subject(s)
Biopolymers/pharmacology , Sewage/microbiology , Waste Disposal, Fluid , Aerobiosis , Bacteria/drug effects , Bacteria/metabolism , Biofilms/drug effects , Biofilms/growth & development , Biomass , Bioreactors , Chelating Agents/pharmacology , Extracellular Polymeric Substance Matrix/drug effects , Extracellular Polymeric Substance Matrix/metabolism , Magnetite Nanoparticles , Sewage/chemistry
5.
J Environ Manage ; 263: 110394, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32174534

ABSTRACT

Alginate-like exopolymers (ALE) are present in the extracellular polymeric substances (EPS) of biological sludge such as aerobic granular sludge (AGS). The recovery of ALE from excess sludge produced by wastewater treatment plants (WWTP) is a relevant approach for the recovery of valuable products of industrial interest. However, little is known about dynamics of ALE content in sludge and associated factors. Thus, this study aimed at assessing the dynamics of EPS and ALE in terms of content, some chemical properties and influencing environmental factors along granulation in a sequencing batch reactor treating municipal wastewater. Results indicated that the EPS content was not correlated with the development of AGS, while the ALE content was higher, more stable and steadily increased after granulation achievement. Overall, 236 ± 27 mg VSALE/g VSsludge was recovered from AGS and 187 ± 94 mg VSALE/g VSsludge from flocs. However, the lower ALE content in flocs may be compensated by the higher sludge production rate in activated sludge systems. Principal component analysis (PCA) revealed that ALE content positively correlates with the nutrient and organic substrate conversion, and with the fraction of large AGS. Microbial analyses indicated that a stable microbial community composition was associated with a higher and more stable ALE content. ALE recovered from both flocs and AGS was endowed with hydrogel property, and no clear difference in their elemental composition and functional groups was observed. Therefore, our study provides insights about quantitative and qualitative aspects of ALE which are helpful for the improvement of waste biological sludge valorization.


Subject(s)
Sewage , Wastewater , Aerobiosis , Alginates , Biopolymers , Bioreactors , Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid
6.
Water Sci Technol ; 79(5): 993-999, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31025979

ABSTRACT

The behavior of mixed samples (activated sludge and wastewater) was investigated after the addition of magnetite nanoparticles (NP-magnetite) in jar tests, with objective to increase the aggregation of sludge and improve its settleability, aiming for future application in granular sequencing batch reactors. The NP-magnetite was synthesized by the method of ion co-precipitation of Fe2+ and Fe3+ and characterized. The process of sludge sedimentation was evaluated for two different experimental strategies, with NP-magnetite concentrations between 25 and 150 mg L-1. The concentration of 75 mg L-1 was the most favorable to process, as evidenced by sludge volumetric index and density. The results presented indicate that the addition of nanoparticles has the potential to improve aerobic granular systems, increasing the settleability of seed sludge.


Subject(s)
Magnetite Nanoparticles/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Sewage , Wastewater
7.
Water Res ; 105: 341-350, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27639343

ABSTRACT

This study aimed at evaluating the formation of aerobic granular sludge (AGS) for the treatment of real and low-strength municipal wastewater using a column sequencing batch reactor (SBR) operated in fill-draw mode (constant volume). The focus was on understanding how the wastewater upflow velocity (VWW) applied during the anaerobic feeding influenced the sludge properties and in turn the substrate conversion. Two different strategies were tested: (1) washing-out the flocs by imposing high wastewater upflow velocities (between 5.9 and 16 m h-1) during the anaerobic feeding (Approach #1) and (2) selective utilization of organic carbon during the anaerobic feeding (1 m h-1) combined with a selective sludge withdrawal (Approach #2). A column SBR of 190 L was operated in constant volume during 1500 days and fed with real and low-strength municipal wastewater. The formation of AGS with SVI30 of around 80 mL gTSS-1 was observed either at very low (1 m h-1) or at high VWW (16 m h-1). At 16 m h-1 the AGS was mainly composed of large and round granules (d > 0.63 mm) with a fluffy surface, while at 1 m h-1 the sludge was dominated by small granules (0.25 < d < 0.63 mm). The AGS contained a significant fraction of flocs during the whole operational period. A considerable and continuous washout of biomass occurred at VWW higher than 5.9 m h-1 (Approach #1) due to the lower settling velocity of the AGS fed with municipal wastewater. The low sludge retention observed at VWW higher than 5.9 m h-1 deteriorated the substrate conversion and in turn the effluent quality. High solid concentrations (and thus solid retention time) were maintained during Approach #2 (VWW of 1 m h-1), which resulted in an excellent effluent quality. The study demonstrated that the formation of AGS is possible during the treatment of real and low-strength municipal wastewater in a SBR operated at constant volume. Low wastewater upflow velocities should be applied during the anaerobic feeding phase in order to ensure enough biomass retention and efficient substrate removal.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biomass , Bioreactors , Sewage/chemistry
8.
Water Res ; 85: 158-66, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26318648

ABSTRACT

The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that contain XS, the selection pressure should be significantly reduced.


Subject(s)
Organic Chemicals/metabolism , Particulate Matter/chemistry , Water Purification/methods , Ammonium Compounds/chemistry , Biological Oxygen Demand Analysis , Biomass , Bioreactors , Kinetics , Phosphorus/chemistry , Sewage/chemistry , Starch/metabolism , Waste Disposal, Fluid/methods , Wastewater
9.
Water Environ Res ; 79(7): 765-74, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17710921

ABSTRACT

The reduction of organic and nitrogen pollution of wastewater was investigated in two hybrid reactors and compared with the reduction obtained by using a conventional activated sludge reactor (ASR) run as a control. Both HR-1 and HR-2 were activated sludge systems where a low-density carrier, P1 (polyethylene) for HR-1 and P2 (recycled plastics) for HR-2, was added. Firstly, the three reactors were operated at 10 days Suspended Solid Retention Time (SRT(SS)), leading to a complete nitrification. Secondly, the SRT(SS) for each reactor was lowered to 3 days. Nitrification was lost for the ASR but remained complete for HR's. Respirometric techniques were used to measure fixed or suspended biomass activities for heterotrophic and autotrophic biomass. More than 90% of the autotrophic activity was found on the supports whatever the SRT(SS) used. The results may underline the role of the carrier geometry or surface characteristics on the autotrophic/heterotrophic microorganism distribution.


Subject(s)
Bioreactors , Polyethylene , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Biofilms , Carbon/metabolism , Conservation of Natural Resources , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...