Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 8(1): 9754, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29950590

ABSTRACT

Dengue is a mild flu-like arboviral illness caused by dengue virus (DENV) that occurs in tropical and subtropical countries. An increasing number of reports have been indicating that dengue is also associated to neurological manifestations, however, little is known regarding the neuropathogenesis of the disease. Here, using BALB/c mice intravenously infected with DENV-2 strain 66985, we demonstrated that the virus is capable of invading and damaging the host's central nervous system (CNS). Brain and cerebellum of infected animals revealed histological alterations such as the presence of inflammatory infiltrates, thickening of pia matter and disorganization of white matter. Additionally, it was also seen that infection lead to altered morphology of neuroglial cells and apoptotic cell death. Such observations highlighted possible alterations that DENV may promote in the host's CNS during a natural infection, hence, helping us to better understand the neuropathological component of the disease.


Subject(s)
Central Nervous System/pathology , Central Nervous System/virology , Dengue Virus/pathogenicity , Adult , Animals , Brain/pathology , Brain/virology , Cell Line , Cerebellum/pathology , Cerebellum/virology , Disease Models, Animal , Flow Cytometry , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C
2.
Protist ; 168(3): 326-334, 2017 07.
Article in English | MEDLINE | ID: mdl-28472733

ABSTRACT

Leishmania braziliensis and Leishmania infantum are the causative agents of cutaneous and visceral leishmaniasis, respectively. Several aspects of the vector-parasite interaction involving gp63 and phosphoglycans have been individually assayed in different studies. However, their role under the same experimental conditions was not studied yet. Here, the roles of divalent metal chelators, anti-gp63 antibodies and purified type I phosphoglycans (PGs) were evaluated during in vitro parasite attachment to the midgut of the vector. Parasites were treated with divalent metal chelators or anti-gp63 antibodies prior to the interaction with Lutzomyia longipalpis/Lutzomyia intermedia midguts or sand fly LL-5 cells. In vitro binding system was used to examine the role of PG and gp63 in parallel. Treatment with divalent metal chelators reduced Le. infantum adhesion to the Lu. longipalpis midguts. The most effective compound (Phen) inhibited the binding in both vectors. Similar results were observed in the interaction between both Leishmania species and the cell line LL-5. Finally, parallel experiments using anti-gp63-treated parasites and PG-incubated midguts demonstrated that both approaches substantially inhibited attachment in the natural parasite-vector pairs Le. infantum/Lu. longipalpis and Le. braziliensis/Lu. intermedia. Our results suggest that gp63 and/or PG are involved in parasite attachment to the midgut of these important vectors.


Subject(s)
Chelating Agents/metabolism , Leishmania braziliensis/physiology , Leishmania infantum/physiology , Metalloendopeptidases/metabolism , Polysaccharides/metabolism , Psychodidae/parasitology , Animals , Metals/metabolism
3.
J Biomed Biotechnol ; 2010: 439174, 2010.
Article in English | MEDLINE | ID: mdl-20011070

ABSTRACT

The interaction between Leishmania and sand flies has been demonstrated in many Old and New World species. Besides the morphological differentiation from procyclic to infective metacyclic promastigotes, the parasite undergoes biochemical transformations in its major surface lipophosphoglycan (LPG). An upregulation of beta-glucose residues was previously shown in the LPG repeat units from procyclic to metacyclic phase in Leishmania (Viannia) braziliensis, which has not been reported in any Leishmania species. LPG has been implicated as an adhesion molecule that mediates the interaction with the midgut epithelium of the sand fly in the Subgenus Leishmania. These adaptations were explored for the first time in a species from the Subgenus Viannia, L. (V.) braziliensis with its natural vectors Lutzomyia (Nyssomyia) intermedia and Lutzomyia (Nyssomyia) whitmani. Using two in vitro binding techniques, phosphoglycans (PGs) derived from procyclic and metacyclic parasites were able to bind to the insect midgut and inhibit L. braziliensis attachment. Interestingly, L. braziliensis procyclic parasite attachment was approximately 11-fold greater in the midgut of L. whitmani than in L. intermedia. The epidemiological relevance of L. whitmani as a vector of American Cutaneous Leishmaniasis (ACL) in Brazil is discussed.


Subject(s)
Leishmania braziliensis/pathogenicity , Psychodidae/parasitology , Animals , Digestive System/metabolism , Digestive System/parasitology , Glycosphingolipids/chemistry , Glycosphingolipids/isolation & purification , Glycosphingolipids/metabolism , Host-Parasite Interactions/physiology , Life Cycle Stages , Microscopy, Fluorescence
4.
Environ Toxicol ; 23(2): 161-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18214915

ABSTRACT

This study evaluated the effects of a saxitoxin-producer strain (T3) of the cyanobacteria species Cylindrospermopsis raciborskii on the swimming movements of three cladoceran species (Daphnia gessneri, D. pulex, and Moina micrura). Acute toxicity bioassays were designed to access the effects of T3 strain, of a nonsaxitoxin producer strain (NPLP-1) of the same species and of a raw water sample from Funil reservoir (Rio de Janeiro, Brazil), that contained this and other cyanobacteria. In the acute bioassays, animals were exposed to C. raciborskii filaments or Funil water for 24-48 h and then transferred to food suspensions without cyanobacterial filaments for a further 48 h. During the exposure time to T3 strain filaments there was a decrease in the number of swimming individuals, with animals showing progressive immobilization. The same effect was observed with Funil water sample. Animals stayed alive on the bottom of the test tube and recovered swimming movements when transferred to food suspensions without toxic cells. This effect was not observed with the strain NPLP-1. The cladoceran D. pulex showed to be extremely sensitive to T3 strain and to Funil water containing C. raciborskii filaments, showing complete paralysis after 24-h exposure to T3 cell densities of 10(3) and 10(4) cells mL(-1), and after 24-h exposure to only 10% of raw water. However, D. gessneri was not sensitive to both T3 and to Funil water, whereas M. micrura was intermediate in sensitivity. This is the first report on the effects of cyanobacterial saxitoxins on movements of freshwater cladocerans, showing also difference in sensitivity among closely related Daphnia species.


Subject(s)
Cladocera/drug effects , Cylindrospermopsis/metabolism , Movement/drug effects , Saxitoxin/toxicity , Swimming , Animals , Cladocera/physiology , Cylindrospermopsis/chemistry , Dose-Response Relationship, Drug , Saxitoxin/isolation & purification , Toxicity Tests, Acute
5.
Mem Inst Oswaldo Cruz ; 102(2): 149-53, 2007 May.
Article in English | MEDLINE | ID: mdl-17426877

ABSTRACT

The aim of the present study, in view of the widespread geographical distribution of Lutzomyia (Nyssomyia) whitmani s.l. in Brazil, in close association with the regions of transmission of Leishmania (Viannia) braziliensis and L. (V.) shawi, is to investigate the distribution of this sand fly species and American cutaneous leishmaniasis (ACL) in relationship to vegetation and landscape ecology throughout Brazil. Thematic maps were elaborated by the MapInfo programme, giving information on the spatial distribution of L. whitmani s.l., in accordance with types of vegetation and foci of ACL. With regards to the known areas of transmission of ACL in Brazil, it is notable that L. (N.) whitmani s.l. occurs in most of them, where it has been implicated as a possible vector of L. (V.) braziliensis. The presence of L. whitmani s.l. has been registered in 26 states, the one exception being Santa Catarina; in some states such as Roraima, Acre, Tocantins, and Mato Grosso do Sul this sand fly species has been recorded in a large number of municipalities. L. whitmani s.l. has been found in association with a variety of vegetation types, including the Amazonian forest, savanna ("campos cerrados"), and northeastern savanna ("caatingas nordestinas" or "savana estépica").


Subject(s)
Insect Vectors/physiology , Leishmania braziliensis , Leishmaniasis, Cutaneous/epidemiology , Psychodidae/physiology , Animals , Brazil/epidemiology , Ecosystem , Geography , Humans , Insect Vectors/parasitology , Leishmaniasis, Cutaneous/transmission , Population Dynamics , Psychodidae/parasitology , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...