Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Clin Pharmacol ; 76(10): 1401-1408, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32564116

ABSTRACT

BACKGROUND: Paclitaxel/carboplatin combination is the standard chemotherapeutic protocol for gynecologic cancers, but severe toxicities may compromise treatment. There is great inter-individual variability regarding the incidence and severity of toxicities, which may be due to single-nucleotide polymorphisms (SNPs) affecting drug disposition or cellular sensitivity. Here we investigate the impact of selected SNPs in ERCC1, ABCB1, CYP2C8, and CYP3A5 genes on the incidence of severe toxicities, including nephro- and hepatotoxicity. METHODS: A cohort of 507 gynecological cancer patients receiving paclitaxel/carboplatin was recruited at the Brazilian National Cancer Institute (INCA-Brazil). Clinical data were obtained during routine consultations or from electronic medical records. Toxicities were graded according to the Common Terminology Criteria for Adverse Events (CTCAE 5.0). Genotyping was performed using real-time PCR. RESULTS: ABCB1 c.1236C>T was associated with moderate-to-severe (grades 2-4) nephrotoxicity (ORadjusted 2.40; 95% CI 1.39-4.15), even after adjustment for age (≥ 65) and diabetes. The risk association between ABCB1 c.1236C>T and moderate-to-severe nephrotoxicity following paclitaxel/carboplatin chemotherapy was also present among non-diabetic patients (ORadjusted 2.16; 95% CI 1.22-3.82). ERCC1 c.118C>T was the only individual variable associated with an increased risk for moderate-to-severe (grades 2-4) hepatotoxicity (OR 3.71; 95% CI 1.08-12.77), severe nausea (OR 4.18; 95% CI 1.59-10.95), and severe myalgia (OR 1.95; 95% CI 1.12-3.40). CONCLUSIONS: ABCB1 c.1236C>T and ERCC1 c.118C>T might serve as potential biomarkers for the risk of moderate-to-severe toxicities to carboplatin/paclitaxel chemotherapy of gynecological cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , DNA-Binding Proteins/genetics , Endonucleases/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Brazil , Carboplatin/administration & dosage , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Cohort Studies , Female , Genital Neoplasms, Female/drug therapy , Humans , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Middle Aged , Paclitaxel/administration & dosage , Polymorphism, Single Nucleotide , Prospective Studies
2.
Arch Gynecol Obstet ; 300(2): 395-407, 2019 08.
Article in English | MEDLINE | ID: mdl-31123858

ABSTRACT

PURPOSE: Gynecologic malignancies are often detected in advanced stages, requiring chemotherapy with taxane/platinum combinations, which may cause severe toxicities, such as neutropenia and peripheral neuropathy. Gene polymorphisms are suspected as possible causes for the interindividual variability on chemotherapy toxicities. OBJECTIVE: To evaluate the role of ABCB1 1236C>T, 3435C>T; CYP2C8*3; CYP3A5*3C variants on paclitaxel/carboplatin toxicities. METHODS: A cohort of 503 gynecologic cancer patients treated with paclitaxel/carboplatin at the Brazilian National Cancer Institute (INCA-Brazil) was recruited (2013-2017). Polymorphisms were genotyped by real-time PCR, and toxicities were evaluated by patients' interviews at each chemotherapy cycle and by data collection from electronic records. The association of clinical features and genotypes with severe toxicities was estimated using Pearson's Chi square tests and multiple regression analyses, with calculation of adjusted odds ratios (ORadjusted), and respective 95% confidence intervals (95% CI). RESULTS: CYP2C8*3 was significantly associated with increased risks of severe (grades 3-4) neutropenia (ORadjusted 2.11; 95% CI 1.24-3.6; dominant model) and severe thrombocytopenia (ORadjusted 4.93; 95% CI 1.69-14.35; recessive model), whereas ABCB1 variant genotypes (ORadjusted 2.13; 95% CI 1.32-3.42), in association with CYP2C8*3 wild type (GG) (ORadjusted 1.93; 95% CI 1.17-3.19), were predictive of severe fatigue. CONCLUSIONS: The present study suggests that CYP2C8*3 is a potential predictor of hematological toxicities related to paclitaxel/carboplatin treatment. Since hematological toxicities, especially neutropenia, may lead to dose delay or treatment interruption, such prognostic evaluation may contribute to clinical management of selected patients with paclitaxel-based chemotherapy.


Subject(s)
Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/adverse effects , Genital Neoplasms, Female/drug therapy , Paclitaxel/adverse effects , Polymorphism, Genetic/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carboplatin/administration & dosage , Carboplatin/pharmacology , Female , Humans , Middle Aged , Paclitaxel/pharmacology , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...