Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 17(11): 3855-3870, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34613880

ABSTRACT

The current pandemic called COVID-19 caused by the SARS-CoV-2 virus brought the need for the search for fast alternatives to both control and fight the SARS-CoV-2 infection. Therefore, a race for a vaccine against COVID-19 took place, and some vaccines have been approved for emergency use in several countries in a record time. Ongoing prophylactic research has sought faster, safer, and precise alternatives by redirecting knowledge of other vaccines, and/or the development of new strategies using available tools, mainly in the areas of genomics and bioinformatics. The current review highlights the development of synthetic antigen vaccines, focusing on the usage of bioinformatics tools for the selection and construction of antigens on the different vaccine constructions under development, as well as strategies to optimize vaccines for COVID-19.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2 , Vaccines, Synthetic/genetics
2.
Int J Syst Evol Microbiol ; 67(8): 2804-2810, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28820095

ABSTRACT

Two Gram-negative, heterotrophic, aerobic, prosthecated, marine bacteria, designated strains MCS23T and MCS27T, were isolated from seawater samples. NaCl was required for growth. The major polar lipid detected in strain MCS27T was phosphatidylglycerol, whereas those detected in MCS23T were phosphatidylglycerol, sulfoquinovosyl diacylglycerol and 1,2-diacyl-3-α-d-glucuronopyranosyl-sn-glycerol taurineamide. The most abundant cellular fatty acids were C18 : 1ω7 and C16 : 0, hydroxyl-fatty acids were 3-OH C12 : 0 in both strains and 3-OH C11 : 0 in MCS23T. Strains MCS23T and MCS27T had DNA G+C contents of 57.0 and 55.0 mol%, respectively. The two strains shared 99.3 % 16S rRNA gene sequence similarity; levels of similarity with the type strains of species of the genus Henriciella were 99.4-97.8 % but DNA-DNA hybridizations were 53 % or lower. Besides their 16S rRNA gene sequences, the novel strains can be differentiated from other species of the genus Henriciella by cell morphology, lipid and fatty acid patterns and enzyme activities. The data obtained led to the identification of two novel species, for which the names Henriciella barbarensis sp. nov. (type strain MCS23T=LMG 28705T=CCUG 66934T) and Henriciella algicola sp. nov. (type strain MCS27T=LMG 29152T=CCUG 67844T) are proposed. As these two novel species are the first prosthecate species in the genus Henriciella, an emended genus description is also provided.


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Seawater/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/genetics , Fatty Acids/analysis , Glycolipids/chemistry , Nucleic Acid Hybridization , Phosphatidylglycerols/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , United States Virgin Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...