Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 36(4): 1459-1506, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35229374

ABSTRACT

Terpenes are one of the most abundant classes of secondary metabolites produced by plants and can be divided based on the number of isoprene units (C5 ) in monoterpenes (2 units-C10 ), sesquiterpenes (3 units-C15 ), diterpenes (4 units-C20 ), triterpenes (6 units-C30 ), etc. Chemically, triterpenes are classified based on their structural skeleton including lanostanes, euphanes, cycloartanes, ursanes, oleananes, lupanes, tirucallanes, cucurbitanes, dammaranes, baccharanes, friedelanes, hopanes, serratanes etc. Additionally, glycosylated (saponins) or highly oxidated/degraded (limonoids) triterpenes could be found in nature. The antiinflammatory effect and action as immunomodulators of these secondary metabolites have been demonstrated in different studies. This review reports an overview of articles published in the last 15 years (from 2006 to 2021 using PubMed and SciFinder database) describing the antiinflammatory effects of different triterpenes with their presumed mechanism of action, suggesting that triterpenes could be appointed as natural products with future pharmaceutical applicability.


Subject(s)
Biological Products , Saponins , Triterpenes , Anti-Inflammatory Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Molecular Structure , Plants , Triterpenes/chemistry , Triterpenes/pharmacology
2.
Acta Trop ; 214: 105768, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33245907

ABSTRACT

Considering the lack of effective and safe therapy for the treatment of Chagas disease, the antihypertensive drug manidipine (MDP) was in vitro evaluated against Trypanosoma cruzi. The bioenergetics of trypomastigotes was studied in the presence of the drug using fluorimetric and luminescent assays. Manidipine showed a potent antiparasitic activity, with IC50 values of 0.1 µM (intracellular amastigotes) and 3 µM (trypomastigotes), resulting in a promising selectivity index against the amastigotes (>1459). Using fluorimetric analysis, the drug showed depolarisation of the electric potential of the plasma membrane with no alteration of the permeability. A decrease in ATP levels suggested a bioenergetic alteration of the mitochondria, which was confirmed by the depolarisation of the mitochondrial membrane potential and a slight increase of the ROS levels. This is the first study to show the promising in vitro effectiveness of the antihypertensive MDP against T. cruzi, which may represent a candidate for future investigations in animal models.


Subject(s)
Antihypertensive Agents/pharmacology , Dihydropyridines/pharmacology , Drug Repositioning , Nitrobenzenes/pharmacology , Piperazines/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Macaca mulatta , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/metabolism
3.
Article in English | MEDLINE | ID: mdl-31737574

ABSTRACT

Liposomes containing phosphatidylserine (PS) has been used for the delivery of drugs into the intramacrophage milieu. Leishmania (L.) infantum parasites live inside macrophages and cause a fatal and neglected viscerotropic disease, with a toxic treatment. Sertraline was studied as a free formulation (SERT) and also entrapped into phosphatidylserine liposomes (LP-SERT) against intracellular amastigotes and in a murine model of visceral leishmaniasis. LP-SERT showed a potent activity against intracellular amastigotes with an EC50 value of 2.5 µM. The in vivo efficacy of SERT demonstrated a therapeutic failure. However, when entrapped into negatively charged liposomes (-58 mV) of 125 nm, it significantly reduced the parasite burden in the mice liver by 89% at 1 mg/kg, reducing the serum levels of the cytokine IL-6 and upregulating the levels of the chemokine MCP-1. Histopathological studies demonstrated the presence of an inflammatory infiltrate with the development of granulomas in the liver, suggesting the resolution of the infection in the treated group. Delivery studies showed fluorescent-labeled LP-SERT in the liver and spleen of mice even after 48 h of administration. This study demonstrates the efficacy of PS liposomes containing sertraline in experimental VL. Considering the urgent need for VL treatments, the repurposing approach of SERT could be a promising alternative.


Subject(s)
Antiprotozoal Agents/administration & dosage , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Liposomes , Phosphatidylserines , Sertraline/administration & dosage , Animals , Antiprotozoal Agents/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Immunomodulation/drug effects , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Liposomes/chemistry , Liver/metabolism , Liver/parasitology , Liver/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Phosphatidylserines/administration & dosage , Sertraline/chemistry , Spleen/metabolism , Spleen/parasitology , Spleen/pathology
4.
Article in English | MEDLINE | ID: mdl-30450114

ABSTRACT

BACKGROUND: Drug repurposing has been an interesting and cost-effective approach, especially for neglected diseases, such as Chagas disease. METHODS: In this work, we studied the activity of the antidepressant drug sertraline against Trypanosoma cruzi trypomastigotes and intracellular amastigotes of the Y and Tulahuen strains, and investigated its action mode using cell biology and in silico approaches. RESULTS: Sertraline demonstrated in vitro efficacy against intracellular amastigotes of both T. cruzi strains inside different host cells, including cardiomyocytes, with IC50 values between 1 to 10 µM, and activity against bloodstream trypomastigotes, with IC50 of 14 µM. Considering the mammalian cytotoxicity, the drug resulted in a selectivity index of 17.8. Sertraline induced a change in the mitochondrial integrity of T. cruzi, resulting in a decrease in ATP levels, but not affecting reactive oxygen levels or plasma membrane permeability. In silico approaches using chemogenomic target fishing, homology modeling and molecular docking suggested the enzyme isocitrate dehydrogenase 2 of T. cruzi (TcIDH2) as a potential target for sertraline. CONCLUSIONS: The present study demonstrated that sertraline had a lethal effect on different forms and strains of T. cruzi, by affecting the bioenergetic metabolism of the parasite. These findings provide a starting point for future experimental assays and may contribute to the development of new compounds.

5.
Article in English | MEDLINE | ID: mdl-28167544

ABSTRACT

Visceral leishmaniasis is a fatal parasitic neglected disease affecting 1.5 million people worldwide. Based on a drug repositioning approach, the aim of this work was to investigate the in vitro immunomodulatory potential of buparvaquone (BPQ) and to establish a safe regimen to evaluate the in vivo efficacy of BPQ entrapped by negatively charged nanoliposomes (BPQ-LP) in Leishmania infantum-infected hamsters. Small-angle X-ray scattering, dynamic light scattering, and the ζ-potential were applied in order to study the influence of BPQ on the liposome structure. Our data revealed that BPQ was located in the polar-apolar interface, snorkeling the polar region, and protected against aggregation inside the lipophilic region. The presence of BPQ also decreased the Z-average hydrodynamic diameter and increased the surface charge. Compared to intravenous and intramuscular administration, a subcutaneous route was a more effective route for BPQ-LP; at 0.4 mg/kg, BPQ-LP reduced infection in the spleen and liver by 98 and 96%, respectively. Treatment for 5 days resulted in limited efficacy, but 10 days of treatment resulted in an efficacy similar to that of a 15-day regimen. The nanoliposomal drug was highly effective, with a mean 50% effective dose of 0.25 mg/kg, reducing the parasite load in bone marrow by 80%, as detected using quantitative PCR analysis. In addition, flow cytometry studies showed that BPQ upregulated cytokines as tumor necrosis factor, monocyte chemoattractant protein 1, interleukin-10 (IL-10), and IL-6 in Leishmania-infected macrophages, eliminating the parasites via a nitric oxide-independent mechanism. This new formulation proved to be a safe and effective treatment for murine leishmaniasis that could be a useful candidate against visceral leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Immunologic Factors/pharmacology , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Liposomes/chemistry , Macrophages/drug effects , Naphthoquinones/pharmacology , Administration, Cutaneous , Animals , Antiprotozoal Agents/chemistry , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/parasitology , Chemokine CCL2/agonists , Chemokine CCL2/biosynthesis , Cricetinae , Disease Models, Animal , Drug Compounding/methods , Immunologic Factors/chemistry , Interleukin-10/agonists , Interleukin-10/biosynthesis , Interleukin-6/agonists , Interleukin-6/biosynthesis , Leishmania infantum/growth & development , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Liposomes/pharmacokinetics , Liver/drug effects , Liver/immunology , Liver/parasitology , Macrophages/immunology , Macrophages/parasitology , Male , Mice , Nanostructures/administration & dosage , Nanostructures/chemistry , Naphthoquinones/chemistry , Parasite Load , Spleen/drug effects , Spleen/immunology , Spleen/parasitology , Static Electricity , Tumor Necrosis Factor-alpha/agonists , Tumor Necrosis Factor-alpha/biosynthesis
6.
PLoS Negl Trop Dis ; 11(1): e0005281, 2017 01.
Article in English | MEDLINE | ID: mdl-28045892

ABSTRACT

BACKGROUND: The leishmanicidal action of tricyclic antidepressants has been studied and evidences have pointed that their action is linked to inhibition of trypanothione reductase, a key enzyme in the redox metabolism of pathogenic trypanosomes. Cyclobenzaprine (CBP) is a tricyclic structurally related to the antidepressant amitriptyline, differing only by the presence of a double bond in the central ring. This paper describes the effect of CBP in experimental visceral leishmaniasis, its inhibitory effect in trypanothione reductase and the potential immunomodulatory activity. METHODOLOGY/PRINCIPAL FINDINGS: In vitro antileishmanial activity was determined in promastigotes and in L. infantum-infected macrophages. For in vivo studies, L. infantum-infected BALB/c mice were treated with CBP by oral gavage for five days and the parasite load was estimated. Trypanothione reductase activity was assessed in the soluble fraction of promastigotes of L. infantum. For evaluation of cytokines, L. infantum-infected macrophages were co-cultured with BALB/c splenocytes and treated with CBP for 48 h. The supernatant was analyzed for IL-6, IL-10, MCP-1, IFN-γ and TNF-α. CBP demonstrated an IC50 of 14.5±1.1µM and an IC90 of 74.5±1.2 µM in promastigotes and an IC50 of 12.6±1.05 µM and an IC90 of 28.7±1.3 µM in intracellular amastigotes. CBP also reduced the parasite load in L. infantum-infected mice by 40.4±10.3% and 66.7±10.5% in spleen at 24.64 and 49.28 mg/kg, respectively and by 85.6±5.0 and 89.3±4.8% in liver at 24.64 and 49.28mg/kg, after a short-term treatment. CBP inhibited the trypanothione reductase activity with a Ki of 86 ± 7.7 µM and increased the ROS production in promastigotes. CBP inhibited in 53% the production of IL-6 in infected macrophages co-culture. CONCLUSION/SIGNIFICANCE: To the best of our knowledge, this study is the first report of the in vivo antileishmanial activity of the FDA-approved drug CBP. Modulation of immune response and induction of oxidative stress in parasite seem to contribute to this efficacy.


Subject(s)
Amitriptyline/analogs & derivatives , Antiprotozoal Agents/administration & dosage , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Reactive Oxygen Species/metabolism , Amitriptyline/administration & dosage , Animals , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Leishmania infantum/genetics , Leishmania infantum/metabolism , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Parasite Load , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
7.
J Nat Prod ; 78(4): 653-7, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25835647

ABSTRACT

Three phenylpropanoid dimers (1-3) including two new metabolites were isolated from the extract of the twigs of Nectandra leucantha using antileishmanial bioassay-guided fractionation. The in vitro antiparasitic activity of the isolated compounds against Leishmania donovani parasites and mammalian cytotoxicity and immunomodulatory effects were evaluated. Compounds 1-3 were effective against the intracellular amastigotes within macrophages, with IC50 values of 26.7, 17.8, and 101.9 µM, respectively. The mammalian cytotoxicity, given by the 50% cytotoxic concentration (CC50), was evaluated against peritoneal macrophages. Compounds 1 and 3 were not toxic up to 290 µM, whereas compound 2 demonstrated a CC50 value of 111.2 µM. Compounds 1-3 also suppressed production of disease exacerbatory cytokines IL-6 and IL-10 but had minimal effect on nitric oxide production in L. donovani-infected macrophages, indicating that antileishmanial activity of these compounds is mediated via an NO-independent mechanism. Therefore, these new natural products could represent promising scaffolds for drug design studies for leishmaniasis.


Subject(s)
Anisoles/isolation & purification , Anisoles/pharmacology , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Immunologic Factors/isolation & purification , Immunologic Factors/pharmacology , Lauraceae/chemistry , Leishmaniasis/drug therapy , Phenylpropionates/isolation & purification , Phenylpropionates/pharmacology , Animals , Anisoles/chemistry , Antiprotozoal Agents/chemistry , Brazil , Immunologic Factors/chemistry , Inhibitory Concentration 50 , Interleukin-10 , Interleukin-6 , Leishmania donovani/drug effects , Macrophages, Peritoneal/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Nitric Oxide/metabolism , Phenylpropionates/chemistry , Plant Stems/chemistry
8.
Mol Cell Biochem ; 389(1-2): 293-300, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24374794

ABSTRACT

Drug repositioning has been considered a promising approach to discover novel treatments against neglected diseases. Among the major protozoan diseases, leishmaniasis remains a public health threat with few therapeutic alternatives, affecting 12 million people in 98 countries. In this study, we report the in vitro antileishmanial activity of the imidazole drugs clotrimazole, and for the first time in literature, econazole and bifonazole and their potential action to affect the regulation of reactive oxygen species (ROS) of the parasites. The lethal action of the imidazoles was investigated using spectrofluorimetric techniques to detect ROS content, plasma membrane permeability, and mitochondrial membrane potential. The imidazoles showed activity against L. (L.) infantum chagasi promastigotes with IC50 values in a range of 2-8 µM; econazole was also effective against Leishmania intracellular amastigotes, with an IC50 value of 11 µM, a similar in vitro effectiveness to miltefosine. Leishmania promastigotes rapidly up-regulated the ROS release after incubation with the imidazoles, but econazole showed a marked increase in ROS content of approximately 1,900 % higher than untreated parasites. When using SYTOX(®) Green as a fluorescent probe, the imidazoles demonstrated considerable interference in plasma membrane permeability at the early time of incubation; econazole resulted in the higher influx of SYTOX(®) Green at 60 min. Despite cellular alterations, no depolarization could be observed to the mitochondrial membrane potential of Leishmania until 60 min. The lethal action of econazole involved strong permeabilization of plasma membrane of promastigotes, with an overloaded ROS content that contributed to the death of parasites. Affecting the ROS regulation of Leishmania via small molecules would be an interesting strategy for new drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Imidazoles/pharmacology , Leishmania infantum/drug effects , Reactive Oxygen Species/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Clotrimazole/pharmacology , Econazole/pharmacology , Leishmania/drug effects , Leishmania/metabolism , Leishmania infantum/metabolism , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/metabolism , Membrane Potential, Mitochondrial/drug effects
9.
Exp Parasitol ; 130(4): 463-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22306070

ABSTRACT

Vero cells have been used successfully in Toxoplasma gondii maintenance. Medium supplementation for culture cells with fetal bovine serum is necessary for cellular growth. However, serum in these cultures presents disadvantages, such as the potential to induce hypersensitivity, variability of serum batches, possible presence of contaminants, and the high cost of good quality serum. Culture media formulated without any animal derived components, designed for serum-free growth of cell lines have been used successfully for different virus replication. The advantages of protozoan parasite growth in cell line cultures using serum-free medium remain poorly studied. Thus, this study was designed to determine whether T. gondii tachyzoites grown in Vero cell cultures in serum-free medium, after many passages, are able to maintain the same antigenic proprieties as those maintained in experimental mice. The standardization of Vero cell culture in serum-free medium for in vitro T. gondii tachyzoite production was performed establishing the optimal initial cell concentration for the confluent monolayer formation, which was 1×10(6) Vero cell culture as initial inoculum. The total confluent monolayer formatted after 96 h and the best amount of harvested tachyzoites was 2.1×10(7) using parasite inoculum of 1.5×10(6) after 7 days post-infection. The infectivity of tachyzoites released from Vero cells maintained in serum-free medium was evaluated using groups of Swiss mice infected with cell-culture tachyzoites. The parasite concentrations were similar to those for mice infected with tachyzoites collected from other infected mice. The data from both in vivo and in vitro experiments showed that in at least 30 culture cell passages, the parasites maintained the same infectivity as maintained in vivo. Another question was to know whether in the several continued passages, immunogenic progressive loss could occur. The nucleotide sequences studied were the same between the different passages, which could mean no change in their viability in the lysate antigen. Thus, the antigen production by cell culture has clear ethical and cost-saving advantages. Moreover, the use of culture media formulated without any human or animal derived components, designed for serum-free growth of cell lines, successfully produced tachyzoites especially for antigen production.


Subject(s)
Antigens, Protozoan/biosynthesis , Toxoplasma/immunology , Animals , Antigens, Protozoan/analysis , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Base Sequence , Chlorocebus aethiops , Culture Media, Serum-Free , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immune Sera/immunology , Mice , Molecular Sequence Data , Polymerase Chain Reaction , Protozoan Proteins/genetics , Sequence Alignment , Serial Passage , Specific Pathogen-Free Organisms , Toxoplasma/genetics , Toxoplasma/growth & development , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...