Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 14(1): 582, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34802463

ABSTRACT

BACKGROUND: Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS: Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS: A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS: Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.


Subject(s)
Anopheles/genetics , Insecticide Resistance/genetics , Africa, Western/epidemiology , Animals , Genes, Insect , Insecticides/adverse effects , Malaria/transmission , Mosquito Vectors/genetics , Mutation
2.
Viruses ; 12(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33316947

ABSTRACT

Multiple epicenters of the SARS-CoV-2 pandemic have emerged since the first pneumonia cases in Wuhan, China, such as Italy, USA, and Brazil. Brazil is the third-most affected country worldwide, but genomic sequences of SARS-CoV-2 strains are mostly restricted to states from the Southeast region. Pernambuco state, located in the Northeast region, is the sixth most affected Brazilian state, but very few genomic sequences from the strains circulating in this region are available. We sequenced 101 strains of SARS-CoV-2 from patients presenting Covid-19 symptoms that reside in Pernambuco. Phylogenetic reconstructions revealed that all genomes belong to the B lineage and most of the samples (88%) were classified as lineage B.1.1. We detected multiple viral introductions from abroad (likely from Europe) as well as six local B.1.1 clades composed by Pernambuco only strains. Local clades comprise sequences from the capital city (Recife) and other country-side cities, corroborating the community spread between different municipalities of the state. These findings demonstrate that different from Southeastern Brazilian states where the epidemics were majorly driven by one dominant lineage (B.1.1.28 or B.1.1.33), the early epidemic phase at the Pernambuco state was driven by multiple B.1.1 lineages seeded through both national and international traveling.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Brazil/epidemiology , Cities/epidemiology , Evolution, Molecular , Genomics , Humans , Longitudinal Studies , Mutation , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/isolation & purification
3.
Malar J ; 18(1): 120, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30953531

ABSTRACT

BACKGROUND: Mosquitoes of the Anopheles gambiae complex are the main malaria vectors worldwide. Due to the lack of a vaccine to prevent malaria, the principal way to reduce the impact of this disease relies on the use of chemical insecticides to control its vectors. However, the intensive use of such compounds has led to the emergence of insecticide resistance in several Anopheles populations in Africa. This study aimed to investigate the presence of resistance alleles in an Anopheles arabiensis population from the City of Praia, capital of the Archipelago Cabo Verde, one of the countries on the World Health Organization list of countries that are on a path to eliminate local transmission of malaria. METHODS: Larvae from the Anopheles genus were collected using a one-pint dipper in three areas of City of Praia. Larvae were fed and maintained until the emergence of adult mosquitoes, and these were morphologically identified. In addition, molecular identification was performed using IGS markers and all An. arabiensis samples were subjected to PCR to screen for mutations associated to resistance in the Ace-1, Nav and GSTE2 genes. RESULTS: From a total of 440 mosquitoes collected, 52.3% were morphologically identified as An. gambiae sensu lato (s.l.) and 46.7% as Anopheles pretoriensis. The molecular identification showed that 100% of the An. gambiae s.l. were An. arabiensis. The mutations G119S in the Ace-1 gene and L119F in the GSTE2 gene were screened but not found in any sample. However, sequencing analysis for GSTE2 revealed the presence of 37 haplotypes, 16 polymorphic sites and a high genetic diversity (π = 2.67). The L1014S mutation in the Nav (voltage-gated sodium channel gene) was detected at a frequency of 7.3%. CONCLUSION: This is the first study to investigate the circulation of insecticide resistance alleles in An. arabiensis from Cabo Verde. The circulation of the L1014S allele in the population of An. arabiensis in the city of Praia suggests that pyrethroid resistance may arise, be quickly selected, and may affect the process of malaria elimination in Cabo Verde. Molecular monitoring of resistance should continue in order to guide the development of strategies to be used in vector control in the study region.


Subject(s)
Anopheles/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Alleles , Animals , Anopheles/drug effects , Cabo Verde , Insect Proteins/metabolism , Malaria , Mosquito Vectors/drug effects , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...