Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Neurosci ; : 1-10, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855112

ABSTRACT

BACKGROUND: Transcranial direct current stimulation (tDCS) and foot drop stimulators (FDS) are widely used for stroke rehabilitation. However, no study has investigated if tDCS could boost the effects of FDS and gait training in improving clinical parameters and neuroplasticity biomarkers of chronic post-stroke subjects. OBJECTIVE: To investigate the effects of combining tDCS and FDS on motor impairment, functional mobility, and brain-derived neurotrophic factor (BDNF) serum levels. Also, to evaluate the effects of this protocol on the insulin-like growth factor-1 (IGF-1), insulin growth factor-binding proteins-3 (IGFBP-3), interleukin (IL) 6 and 10, and tumor necrosis factor-α (TNF-α) levels. METHODS: Thirty-two chronic post-stroke individuals were randomized to tDCS plus FDS or sham tDCS plus FDS groups. Both groups underwent ten gait training sessions for two weeks using a FDS device and real or sham tDCS. Blood samples and clinical data were acquired before and after the intervention. Motor impairment was assessed by the Fugl-Meyer Assessment and functional mobility using the Timed up and Go test. RESULTS: Both groups improved the motor impairment and functional mobility and increased the BDNF levels. Both groups also increased the IL-10 and decreased the cortisol, IL-6, and TNF-α levels. No difference was observed between groups. CONCLUSION: tDCS did not add effect to FDS and gait training in improving clinical parameters and neuroplasticity biomarkers in chronic post-stroke individuals. Only FDS and gait training might be enough for people with chronic stroke to modify some clinical parameters and neuroplasticity biomarkers.

2.
Phys Ther ; 102(8)2022 08 04.
Article in English | MEDLINE | ID: mdl-35689805

ABSTRACT

OBJECTIVE: The aim of this study was to assess the effects of applying transcranial direct-current stimulation (tDCS), a footdrop stimulator (FDS), and gait training simultaneously on functional mobility in people with chronic hemiparesis after stroke. METHODS: In this double-blind controlled trial, 32 individuals with mild, moderate, and severe chronic hemiparesis after stroke were randomized to tDCS plus FDS or sham tDCS plus FDS groups. Both groups underwent 10 concurrent tDCS and FDS gait training sessions 5 times per week for 2 weeks. Functional mobility was evaluated by the Timed "Up & Go" test (TUG). Secondary outcomes included spasticity of plantarflexors, knee extensors, and hip adductors; quality of life; and walking endurance (distance covered during each treadmill gait training session). Clinical assessments were performed before treatment, after treatment, and at a 1-month follow-up. A generalized estimating equation was used to compare the effects of time, group, and time × group interaction. RESULTS: No difference between groups was observed during performance of the TUG or other outcomes. TUG performance was improved in both the tDCS plus FDS group (before treatment = 24.29 [95% CI = 17.72-33.28]; after treatment = 21.75 [95% CI = 15.75-30.08]) and the sham tDCS plus FDS group (before treatment = 19.63 [95% CI = 16.06-23.0]; after treatment = 18.45 [95% CI = 15.26-22.3]). This improvement remained at the follow-up evaluation. Both groups also showed reduced spasticity of plantarflexors and knee extensors, increased quality of life, and increased total distance walked. CONCLUSION: This study provided no evidence that bicephalic tDCS improves functional mobility, spasticity, quality of life, or walking endurance in people with chronic hemiparesis after stroke. IMPACT: Bicephalic tDCS does not add relevant benefits to FDS and gait training in people who have chronic hemiparesis after stroke. Given that tDCS has few additional effects and given its costs for clinical practice, tDCS for rehabilitation in people with chronic hemiparesis after stroke is discouraged. FDS and gait training improve functional mobility, walking resistance, and quality of life in people with chronic hemiparesis after stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Double-Blind Method , Humans , Paresis , Quality of Life , Treatment Outcome
3.
PLoS One ; 16(4): e0250100, 2021.
Article in English | MEDLINE | ID: mdl-33886640

ABSTRACT

BACKGROUND: Walking speed is often used in the clinic to assess the level of gait impairment following stroke. Nonetheless, post-stroke individuals may employ the same walking speed but at a distinct movement quality. The main objective of this study was to explore a novel movement quality metric, the estimation of gait smoothness by the spectral arc length (SPARC), in individuals with a chronic stroke displaying mild/moderate or severe motor impairment while walking in an outdoor environment. Also, to quantify the correlation between SPARC, gait speed, motor impairment, and lower limb spasticity focused on understanding the relationship between the movement smoothness metric and common clinical assessments. METHODS: Thirty-two individuals with a chronic stroke and 32 control subjects participated in this study. The 10 meters walking test (10 MWT) was performed at the self-selected speed in an outdoor environment. The 10 MWT was instrumented with an inertial measurement unit system (IMU), which afforded the extraction of trunk angular velocities (yaw, roll, and pitch) and subsequent SPARC calculation. RESULTS: Movement smoothness was not influenced by gait speed in the control group, indicating that SPARC may constitute an additional and independent metric in the gait assessment. Individuals with a chronic stroke displayed reduced smoothness in the yaw and roll angular velocities (lower SPARC) compared with the control group. Also, severely impaired participants presented greater variability in smoothness along the 10 MWT. In the stroke group, a smoother gait in the pitch angular velocity was correlated with lower limb spasticity, likely indicating adaptive use of spasticity to maintain the pendular walking mechanics. Conversely, reduced smoothness in the roll angular velocity was related to pronounced spasticity. CONCLUSIONS: Individuals with a chronic stroke displayed reduced smoothness in the yaw and roll angular velocities while walking in an outdoor environment. The quantification of gait smoothness using the SPARC metric may represent an additional outcome in clinical assessments of gait in individuals with a chronic stroke.


Subject(s)
Gait/physiology , Movement/physiology , Stroke/physiopathology , Walking/physiology , Adult , Aged , Biomechanical Phenomena/physiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Walking Speed/physiology
4.
Sensors (Basel) ; 21(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573046

ABSTRACT

The main purpose of the present study was to assess the effects of foot drop stimulators (FDS) in individuals with stroke by means of spatio-temporal and step-to-step symmetry, harmonic ratio (HR), parameters obtained from trunk accelerations acquired using a wearable inertial sensor. Thirty-two patients (age: 56.84 ± 9.10 years; 68.8% male) underwent an instrumental gait analysis, performed using a wearable inertial sensor before and a day after the 10-session treatment (PRE and POST sessions). The treatment consisted of 10 sessions of 20 min of walking on a treadmill while using the FDS device. The spatio-temporal parameters and the HR in the anteroposterior (AP), vertical (V), and mediolateral (ML) directions were computed from trunk acceleration data. The results showed that time had a significant effect on the spatio-temporal parameters; in particular, a significant increase in gait speed was detected. Regarding the HRs, the HR in the ML direction was found to have significantly increased (+20%), while those in the AP and V directions decreased (approximately 13%). Even if further studies are necessary, from these results, the HR seems to provide additional information on gait patterns with respect to the traditional spatio-temporal parameters, advancing the assessment of the effects of FDS devices in stroke patients.


Subject(s)
Electric Stimulation , Peroneal Neuropathies , Stroke , Wearable Electronic Devices , Aged , Biosensing Techniques , Female , Gait , Humans , Male , Middle Aged , Peroneal Neuropathies/therapy , Stroke/complications , Stroke/therapy
5.
Metab Brain Dis ; 29(3): 825-35, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24810635

ABSTRACT

The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.


Subject(s)
Adenosine Triphosphate/metabolism , Creatine Kinase/metabolism , Electron Transport Complex IV/metabolism , Hippocampus/metabolism , Ovariectomy , Physical Conditioning, Animal/physiology , Animals , Female , Pyruvate Kinase/metabolism , Rats , Rats, Wistar , Succinate Dehydrogenase/metabolism
6.
Mol Cell Biochem ; 361(1-2): 281-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22012612

ABSTRACT

Methylphenidate (MPH), a psychostimulant that affects both dopaminergic and noradrenergic systems, is one of the most frequently prescribed treatments for attention-deficit hyperactivity disorder. The present study investigated the effects of chronic administration of MPH on some parameters of oxidative stress, as well as on butyrylcholinesterase (BuChE) activity in blood of young rats. Rats received intraperitoneal injections of MPH (2.0 mg/kg) once a day, from the 15th to the 45th day of age or an equivalent volume of 0.9% saline solution (controls). Two hours after the last injection, animals were euthanized, and blood was collected. Results demonstrated that MPH did not alter the dichlorofluorescein formed, decreased both thiobarbituric acid reactive substances and total non-enzymatic radical-trapping antioxidant, and increased superoxide dismutase and catalase activities, suggesting that this psychostimulant may alter antioxidant defenses. BuChE activity was increased in blood of juvenile rats subjected to chronic MPH administration. These findings suggest that MPH may promote peripheral oxidative adaptations and cholinergic changes.


Subject(s)
Antioxidants/metabolism , Butyrylcholinesterase/blood , Central Nervous System Stimulants/pharmacology , Methylphenidate/pharmacology , Animals , Catalase/blood , Central Nervous System Stimulants/adverse effects , Glutathione Peroxidase/blood , Methylphenidate/adverse effects , Nitrites/blood , Oxidation-Reduction , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/blood , Superoxide Dismutase/blood , Thiobarbituric Acid Reactive Substances/metabolism
7.
Cardiovasc Toxicol ; 11(1): 67-73, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21076891

ABSTRACT

Hyperhomocysteinemia is a risk factor for cardiovascular disease, stroke, and thrombosis; however, the mechanisms by which homocysteine triggers these dysfunctions are not fully understood. In the present study, we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely thiobarbituric acid reactive substances, an index of lipid peroxidation, 2',7'-dichlorofluorescein (H(2)DCF) oxidation, activities of antioxidant enzymes named superoxide dismutase and catalase, as well as nitrite levels in heart of young rats. We also evaluated the effect of folic acid on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3-0.6 µmol/g body weight) and/or folic acid (0.011 µmol/g body weight) from their 6th to the 28th day of life. Controls and treated rats were killed 1 h and/or 12 h after the last injection. Results showed that chronic homocysteine administration increases lipid peroxidation and reactive species production and decreases enzymatic antioxidant defenses and nitrite levels in the heart of young rats killed 1 h, but not 12 h after the last injection of homocysteine. Folic acid concurrent administration prevented homocysteine effects probable by its antioxidant properties. Our data indicate that oxidative stress is elicited by chronic hyperhomocystenemia, a mechanism that may contribute, at least in part, to the cardiovascular alterations characteristic of hyperhomocysteinemic patients. If confirmed in human beings, our results could propose that the supplementation of folic acid can be used as an adjuvant therapy in cardiovascular alterations caused by homocysteine.


Subject(s)
Antioxidants/pharmacology , Folic Acid/pharmacology , Heart Diseases/prevention & control , Homocysteine/metabolism , Hyperhomocysteinemia/drug therapy , Myocardium/metabolism , Oxidative Stress/drug effects , Reactive Nitrogen Species/metabolism , Animals , Antioxidants/chemistry , Catalase/metabolism , Disease Models, Animal , Female , Fluoresceins/chemistry , Folic Acid/chemistry , Heart Diseases/etiology , Heart Diseases/metabolism , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/metabolism , Lipid Peroxidation/drug effects , Male , Nitrites/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...