Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Sci ; 27(3): 519-530, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30548193

ABSTRACT

Bacillus thuringiensis (Bt) toxins are effective in controlling insect pests either through the spraying of products or when expressed in transgenic crops. The discovery of endophytic Bt strains opened new perspectives for studies aimed at the control of sap-sucking insects, such as the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae), a vector of "Candidatus Liberibacter spp.," associated with citrus huanglongbing (HLB). In this study, translocation of endophytic Bt strains in citrus seedlings inoculated with Bt suspension delivered by soil-drench, and their systemic pathogenicity to D. citri nymphs were investigated. The pathogenicity of three wild-type Bt strains against D. citri third-instar nymphs was demonstrated. Among the 10 recombinant strains tested (each of them harboring a single cry or cyt gene), 3 can be highlighted, causing 42%-77% and 66%-90% nymphal mortality at 2 and 5 d after inoculation, respectively. The isolation of Bt cells from young citrus shoots and dead nymphs, and PCR performed with specific primers, confirmed the involvement of the Bt strains in the psyllid mortality. This is the first report showing the translocation of Bt strains from citrus seedling roots to shoots and their potential to control D. citri nymphs that fed on these soil-drench inoculated seedlings. The Bt strains that caused the highest mortality rates have the potential to be used as bioinsecticides to control D. citri and the identified genes can be used for the production of transgenic Bt citrus.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins/genetics , Citrus/microbiology , Endotoxins/genetics , Hemiptera/microbiology , Hemolysin Proteins/genetics , Plant Shoots/microbiology , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/pathogenicity , Bacillus thuringiensis Toxins , Endophytes/genetics , Endophytes/pathogenicity , Insect Vectors/microbiology , Nymph/microbiology , Pest Control, Biological/methods , Plant Diseases/microbiology , Rhizobiaceae , Seedlings/microbiology , Selection, Genetic
2.
Int J Food Microbiol ; 276: 20-27, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29653393

ABSTRACT

Penicillium italicum (Blue mold) is a major postharvest disease of citrus. An alternative to controlling the disease is through the use of yeasts. The purpose of the present study was to screen effective yeast antagonists against P. italicum, isolated from soil, leaves, flowers, and citrus fruits, to assess the action mechanisms of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of blue mold. The in vitro assays showed that six yeast strains inhibited up to 90% of the pathogen's mycelial growth. In vivo assays, evaluating the incidence of blue mold on sweet oranges, the strains ACBL-04, ACBL-05, ACBL-10 and ACBL-11 were effective, demonstrating the potential for the blue mold control when preventively applied, whereas the ACBL-08 strain showed a high potential to preventive and curative applications. Additional studies on the modes of action of these yeast strains showed that most of the evaluated yeast strains did not produce antifungal substances, in sufficient quantities to inhibit the pathogen growth. Competition for nutrients was not a biocontrol strategy used by the yeast strains. The 'killer' activity might be the main action mechanism involved in P. italicum biocontrol. This study indicated that the multiple modes of action against the pathogen presented by yeasts may explain why these strains provided P. italicum control under in vitro and in vivo conditions. However, further studies in future might be able to elucidate the 'killer' activity and its interaction with pathogen cells and the bioproduct production using Candida stellimalicola strains for control postharvest diseases.


Subject(s)
Antibiosis/physiology , Citrus/microbiology , Food Microbiology , Penicillium/physiology , Yeasts/physiology , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...