Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 41(7): 1589-1601, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35665839

ABSTRACT

KEY MESSAGE: pGhERF105 and pGhNc-HARBI1 promoters are highly responsive to CBW infestation and exhibit strong activity in vegetative and reproductive tissues, increasing their potential application in GM crop plants for pest control. The main challenge to cotton (Gossypium hirsutum) crop productivity is the constant attack of several pests, including the cotton boll weevil (CBW, Anthonomus grandis), which uses cotton floral buds for feeding and egg-laying. The endophytic nature of the early developmental stages of CBW makes conventional pesticide-based control poorly efficient. Most biotechnological assets used for pest control are based on Bacillus thurigiensis insecticidal Cry toxins or the silencing of insect-pest essential genes using RNA-interference technology. However, suitable plant promoter sequences are required to efficiently drive insecticidal molecules to the target plant tissue. This study selected the Ethylene Responsive Factor 105 (GhERF105) and Harbinger transposase-derived nuclease (GhNc-HARBI1) genes based on available transcriptome-wide data from cotton plants infested by CBW larvae. The GhERF105 and GhNc-HARBI1 genes showed induction kinetics from 2 to 96 h under CBW's infestation in cotton floral buds, uncovering the potential application of their promoters. Therefore, the promoter regions (1,500 base pairs) were assessed and characterized using Arabidopsis thaliana transgenic plants. The pGhERF105 and pGhNc-HARBI1 promoters showed strong activity in plant vegetative (leaves and roots) and reproductive (flowers and fruits) tissues, encompassing higher GUS transcriptional activity than the viral-constitutive Cauliflower Mosaic Virus 35S promoter (pCaMV35S). Notably, pGhERF105 and pGhNc-HARBI1 promoters demonstrated more efficiency in driving reporter genes in flowers than other previously characterized cotton flower-specific promoters. Overall, the present study provides a new set of cotton promoters suitable for biotechnological application in cotton plants for pest resistance.


Subject(s)
Arabidopsis , Weevils , Animals , Arabidopsis/genetics , Flowers , Gossypium/genetics , Pest Control , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Weevils/genetics
2.
Plant Physiol Biochem ; 160: 193-210, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33513466

ABSTRACT

Soil salinity has the potential to severely affect crop performance. To maintain cell functioning and improve salt tolerance, the maintenance of K+ homeostasis is crucial in several plant metabolism processes. Besides, potassium fertilization can efficiently alleviate the perilous effects of salinity. We characterized impacts in Setaria viridis exposed to NaCl and KCl to underlying photochemistry mechanisms, K+ and Na+ shoot contents, enzymatic activity, electrolytic leakage, and morphological responses focusing on non-stomatal limitation of photosynthesis. Plants were exposed to sodium chloride (NaCl; 0, 150 and 250 mM) and potassium chloride (KCl; 0, 5, 9 mM). The exposure to NaCl affected S. viridis leaves morphological and physiologically. Plants submitted to 150 mM showed reductions in performance indexes (PIabs and PItotal; JIP-test), and the presence of positive K- and L-bands. Plants exposed to 250 mM exhibited blockage in electron flow further than QA within 48h and permanent photoinhibition at 96 h. The presence of 9 and 5 mM of KCl counteracted the effects of NaCl on plants submitted to 150 mM, concomitant with increases in K+ accumulation and cell turgidity conservation, causing positive effects in plant growth and metabolism. Neither KCl concentrations were effective in reducing NaCl-induced effects on plants exposed to 250 mM of NaCl. Our results support the conclusion that greater availability of K+ alleviates the harmful effects of salinity in S. viridis under moderate stress and that application of KCl as means of lightning saline stress has a concentration and a salt level limit that must be experimentally determined.


Subject(s)
Potassium , Salinity , Setaria Plant/drug effects , Stress, Physiological , Chlorophyll , Plant Leaves/chemistry , Setaria Plant/chemistry , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...