Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Braz J Biol ; 73(3): 501-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24212689

ABSTRACT

Benthic marine organisms are constantly exposed to fouling, which is harmful to most host species. Thus, the production of secondary metabolites containing antifouling properties is an important ecological advantage for sessile organisms and may also provide leading compounds for the development of antifouling paints. High antifouling potential of sponges has been demonstrated in the Indian and Pacific oceans and in the Caribbean and Mediterranean seas. Brazilian sponges remain understudied concerning antifouling activities. Only two scientific articles reported this activity in sponges of Brazil. The objective of this study was to test crude extracts of twelve species of sponges from Brazil against the attachment of the mussel Perna perna through laboratorial assays, and highlight promising species for future studies. The species Petromica citrina, Amphimedon viridis, Desmapsamma anchorata, Chondrosia sp., Polymastia janeirensis, Tedania ignis, Aplysina fulva, Mycale angulosa, Hymeniacidon heliophila, Dysidea etheria, Tethya rubra, and Tethya maza were frozen and freeze-dried before extraction with acetone or dichloromethane. The crude extract of four species significantly inhibited the attachment of byssus: Tethya rubra (p = 0.0009), Tethya maza (p = 0.0039), Petromica citrina (p = 0.0277), and Hymeniacidon heliophila (p = 0.00003). These species, specially, should be the target of future studies to detail the substances involved in the ability antifouling well as to define its amplitude of action.


Subject(s)
Perna/drug effects , Porifera/chemistry , Animals , Biological Assay , Brazil , Porifera/classification
2.
Biofouling ; 26(3): 367-77, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20169477

ABSTRACT

Prevention of epibiosis is of vital importance for most aquatic organisms, which can have consequences for their ability to invade new areas. Surface microtopography of the shell periostracum has been shown to have antifouling properties for mytilid mussels, and the topography shows regional differences. This article examines whether an optimal shell design exists and evaluates the degree to which shell microstructure is matched with the properties of the local fouling community. Biomimics of four mytilid species from different regional provenances were exposed at eight different sites in both northern and southern hemispheres. Tendencies of the microtopography to both inhibit and facilitate fouling were detected after 3 and 6 weeks of immersion. However, on a global scale, all microtopographies failed to prevent fouling in a consistent manner when exposed to various fouling communities and when decoupled from other shell properties. It is therefore suggested that the recently discovered chemical anti-microfouling properties of the periostracum complement the anti-macrofouling defence offered by shell microtopography.


Subject(s)
Animal Shells/anatomy & histology , Biofilms , Mytilus edulis/anatomy & histology , Animal Shells/microbiology , Animals , Mytilus edulis/microbiology
3.
J Struct Biol ; 162(2): 345-55, 2008 May.
Article in English | MEDLINE | ID: mdl-18337120

ABSTRACT

The production of secondary metabolites in seaweed have been related to a capability to partition compounds into cellular specialized storage structures, like gland cells and the corps en cerise (CC) or cherry bodies. The possible mechanisms that bring these compounds to the thallus surface remain poorly understood. Therefore, the aim of this work is perform a characterization of the CC and determine the intra-cellular dynamics of halogenated compounds in Laurencia obtusa. The dynamics of CC and the mechanisms related to the intra-cellular transport of halogenated compounds were evaluated by using optical tweezers and time-lapse video microscopy. The CC were isolated and its elemental composition was characterized using X-ray microanalysis. The cellular distribution of halogenated compounds was also demonstrated by fluorescence microscopy. Three-dimensional reconstruction technique was used to provide a visualization of the structures that connect CC to cell periphery. As main findings, we confirmed that the halogenated compounds are mainly found in CC and also in vesicles distributed along the cytoplasm and within the chloroplasts. We demonstrated that CC is mechanically fixed to cell periphery by a stalk-like connection. A vesicle transport though membranous tubular connections was seen occurring from CC to cell wall region. We also demonstrated a process of cortical cell death event, resulting in degradation of CC. We suggested that the vesicle transportation along membranous tubular connections and cell death events are related to the mechanisms of halogenated compounds exudation to the thallus surface and consequently with defensive role against herbivores and fouling.


Subject(s)
Biological Transport , Hydrocarbons, Halogenated/metabolism , Laurencia/metabolism , Laurencia/physiology , Cell Death , Electron Probe Microanalysis , Exocytosis , Image Processing, Computer-Assisted , Rhodophyta
4.
Braz. j. biol ; 63(4): 665-672, Nov. 2003. ilus, graf
Article in English | LILACS | ID: lil-355884

ABSTRACT

Laboratory and field experiments were performed to assess the ecological roles of natural products produced by the Brazilian red seaweed Laurencia obtusa. Laboratory assays revealed that the natural concentration of the crude organic extract of L. obtusa significantly inhibited feeding by two herbivores: the crab Pachygrapsus transversus and the sea urchin Lytechinus variegatus. It was verified that this chemically defensive action was due to halogenated sesquiterpenoid elatol, found to be the major natural product of this red seaweed. In addition, it was verified that the antifouling property of the chemicals produced by L. obtusa could make this red alga less attractive for fish grazing. Direct protection against two herbivore species and indirect protection against herbivory by fouling inibition constitute evidence that the major natural product from Brazilian L. obtusa plays multiple environmental roles, thereby increasing the adaptive value of these metabolites. On the other hand, the evidence reinforces the idea that marine natural products may have different functions in the sea.


Subject(s)
Animals , Seaweed , Adaptation, Physiological , Brazil , Ecosystem , Sea Urchins
5.
Braz J Biol ; 63(4): 665-72, 2003 Nov.
Article in English | MEDLINE | ID: mdl-15029377

ABSTRACT

Laboratory and field experiments were performed to assess the ecological roles of natural products produced by the Brazilian red seaweed Laurencia obtusa. Laboratory assays revealed that the natural concentration of the crude organic extract of L. obtusa significantly inhibited feeding by two herbivores: the crab Pachygrapsus transversus and the sea urchin Lytechinus variegatus. It was verified that this chemically defensive action was due to halogenated sesquiterpenoid elatol, found to be the major natural product of this red seaweed. In addition, it was verified that the antifouling property of the chemicals produced by L. obtusa could make this red alga less attractive for fish grazing. Direct protection against two herbivore species and indirect protection against herbivory by fouling inibition constitute evidence that the major natural product from Brazilian L. obtusa plays multiple environmental roles, thereby increasing the adaptive value of these metabolites. On the other hand, the evidence reinforces the idea that marine natural products may have different functions in the sea.


Subject(s)
Laurencia/chemistry , Seaweed/chemistry , Adaptation, Physiological , Animals , Brazil , Decapoda/drug effects , Ecosystem , Sea Urchins/drug effects
6.
Braz J Biol ; 62(1): 33-40, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12185921

ABSTRACT

Seaweed preference by the Brazilian endemic gastropod Astraea latispina was examined in the laboratory to evaluate the role of secondary metabolites in determining food choice. Of three species of seaweeds examined, Plocamium brasiliense was highly preferred; less so were Sargassum furcatum and Dictyota cervicornis were preferred less. Extracts and/or pure major metabolites of the two potentially chemically-defended seaweeds (P. brasiliense and D. cervicornis) were tested as feeding deterrents against A. latispina. Algal extract assays demonstrated that three concentrations of crude organic extract of the red alga P. brasiliense (50%, 100%: natural concentration, and 200% of dry weight: dw) did not affect feeding of this gastropod. In contrast, the three concentrations of crude organic extract of the brown alga D. cervicornis (50%, 100% and 200% dw) inhibited feeding by A. latispina. The chemical deterrent property of D. cervicornis extract against the gastropod A. latispina occurred due to a mixture of the secodolastane diterpenes isolinearol/linearol (4:1--0.08% dry weight). This is the first report showing that Dictyota cervicornis produces a chemical defense against herbivores using secodolastane diterpenoid. In addition, these results widen the action spectrum of secondary metabolites found in seaweed belonging to this brown algal genus.


Subject(s)
Food Preferences/physiology , Mollusca/physiology , Seaweed/chemistry , Animals , Brazil , Feeding Behavior , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...