Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37895955

ABSTRACT

Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.

2.
Sci Rep ; 7: 45740, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28387228

ABSTRACT

TGF-ß1 is the main mediator of epithelial-to-mesenchymal transition (EMT). Hyperoxaluria induces crystalluria, interstitial fibrosis, and progressive renal failure. This study analyzed whether hyperoxaluria is associated with TGF-ß1 production and kidney fibrosis in mice and if oxalate or calcium oxalate (CaOx) could induce EMT in proximal tubule cells (HK2) and therefore contribute to the fibrotic process. Hyperoxaluria was induced by adding hydroxyproline and ethylene glycol to the mice's drinking water for up to 60 days. Renal function and oxalate and urinary crystals were evaluated. Kidney collagen production and TGF-ß1 expression were assessed. EMT was analyzed in vitro according to TGF-ß1 production, phenotypic characterization, invasion, cell migration, gene and protein expression of epithelial and mesenchymal markers. Hyperoxaluric mice showed a decrease in renal function and an increase in CaOx crystals and Ox urinary excretion. The deposition of collagen in the renal interstitium was observed. HK2 cells stimulated with Ox and CaOx exhibited a decreased expression of epithelial as well as increased expression mesenchymal markers; these cells presented mesenchymal phenotypic changes, migration, invasiveness capability and TGF-ß1 production, characterizing EMT. Treatment with BMP-7 or its overexpression in HK2 cells was effective at preventing it. This mechanism may contribute to the fibrosis observed in hyperoxaluria.


Subject(s)
Calcium Oxalate/administration & dosage , Epithelial-Mesenchymal Transition , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney/injuries , Animals , Cell Movement , Ethylene Glycol/administration & dosage , Fibrosis/chemically induced , Fibrosis/pathology , Hydroxyproline/administration & dosage , Hyperoxaluria/chemically induced , Kidney Tubules, Proximal/drug effects , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism
3.
J Immunol Res ; 2016: 9151607, 2016.
Article in English | MEDLINE | ID: mdl-28018922

ABSTRACT

Objective. To evaluate the expression of inflammatory markers in experimental renal failure after fetal programming. Methods. The offspring aged two and five months were divided into four groups: CC (control dams, control offspring); DC (diabetic dams, control offspring); CFA (control dams, folic acid offspring, 250 mg/Kg); and DFA (diabetic dams, folic acid offspring). Gene expression of inflammatory markers MCP-1, IL-1, NOS3, TGF-ß, TNF-α, and VEGF was evaluated by RT-PCR. Results. MCP-1 was increased in the CFA and DFA groups at two and five months of age, as well as in DC5 when compared to CC5. There was a higher expression of IL-1 in the CFA2, DFA2, and DC2 groups. There was a decrease in NOS3 and an increase in TNF-α in DFA5 in relation to CFA5. The gene expression of TGF-ß increased in cases that had received folic acid at two and five months, and VEGF decreased in the CFA5 and DFA5 groups. DC5 showed increased VEGF expression in comparison with CC5. Conclusions. Gestational diabetes mellitus and folic acid both change the expression of inflammatory markers, thus demonstrating that the exposure to harmful agents in adulthood has a more severe impact in cases which underwent fetal reprogramming.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Diabetes, Gestational/pathology , Fetal Development/physiology , Folic Acid/pharmacology , Kidney/pathology , Renal Insufficiency/pathology , Animals , Biomarkers/metabolism , Chemokine CCL2/metabolism , Female , Interleukin-1/metabolism , Kidney/immunology , Lymphotoxin-alpha/metabolism , Male , Nitric Oxide Synthase Type III/metabolism , Pregnancy , Rats , Rats, Wistar , Renal Insufficiency/immunology , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
4.
Arq Bras Oftalmol ; 70(3): 407-11, 2007.
Article in Portuguese | MEDLINE | ID: mdl-17768545

ABSTRACT

PURPOSE: To evaluate the morphological features of the amniotic membrane denuded by different techniques. METHODS: Human amniotic membrane was collected at the time of delivery, fixed in increasing concentrations of glycerol (0-50% in DMEM) and preserved at -80 degrees C until the time of use. The study consisted of 4 groups: intact epithelium (control) and denuded by trypsin (2 mg/mL at 1:250), dispase (1.2 U/mL in Mg2+ and Ca2+ free Hank's balanced salt solution) or ethylenediaminetetraacetic acid (EDTA), 0.02%. Specimens were submitted to electron (scanning and transmission) microscopy analysis. RESULTS: Scanning electron microscopy disclosed intact epithelium in the control group and its absence in the amniotic membranes denuded by trypsin and dispase. In those denuded by ethylenediaminetetraacetic acid there were areas with and without epithelium. When assessed by transmission electron microscopy, the epithelium was intact and firmly adhered to the basement membrane by hemidesmossomes in controls and in parts of ethylenediaminetetraacetic acid group. There were only collagen fibers in the dispase- and trypsin-treated groups. CONCLUSIONS: Trypsin and dispase treatment of the amniotic membrane may cause complete denuding of the epithelium and basement membrane whereas ethylenediaminetetraacetic acid may leave some intact epithelium-areas and partially destroy the basement membrane in others.


Subject(s)
Amnion/ultrastructure , Epithelial Cells/ultrastructure , Amnion/drug effects , Cell Culture Techniques , Edetic Acid/pharmacology , Endopeptidases/pharmacology , Humans , Microscopy, Electron , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...