Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 48(8): 2574-2581, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30644485

ABSTRACT

The increasing demand for renewable energy has been promoting a rapid development of photovoltaic technologies. Given this, photoinduced thermal emission is being explored with the aim of improving solar cell performance by converting low-energy IR photons into visible light. Here, we report the light-induced blackbody emission from LnO2 (Ln = Pr and Tb) as a potential emitter for thermophotovoltaic applications. Lanthanide dioxides display broad IR absorption and a direct optical band gap of 1.49 (PrO2) and 1.51 eV (TbO2). These materials achieve a maximum temperature of ∼1500 K under a power density excitation of 160 W cm-2 and display a stable bright light emission. Thermal emission can be tuned from laser power density modulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...